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Abstract

This article introduces a nonparametric approach to spectral analysis of a high-dimensional

multivariate nonstationary time series. The procedure is based on a novel frequency-domain

factor model that provides a flexible yet parsimonious representation of spectral matrices

from a large number of simultaneously observed time series. Real and imaginary parts of

the factor loading matrices are modeled independently using a prior that is formulated from

the tensor product of penalized splines and multiplicative gamma process shrinkage priors,

allowing for infinitely many factors with loadings increasingly shrunk towards zero as the col-

umn index increases. Formulated in a fully Bayesian framework, the time series is adaptively

partitioned into approximately stationary segments, where both the number and locations

of partition points are assumed unknown. Stochastic approximation Monte Carlo (SAMC)

techniques are used to accommodate the unknown number of segments, and a conditional

Whittle likelihood-based Gibbs sampler is developed for efficient sampling within segments.

By averaging over the distribution of partitions, the proposed method can approximate both

abrupt and slowly varying changes in spectral matrices. Performance of the proposed model

is evaluated by extensive simulations and demonstrated through the analysis of high-density

electroencephalography. Supplementary materials for this article are available online.

KEY WORDS: Factor Analysis; High-dimensional Time Series; Locally Stationary Process;

Multiplicative Gamma Process; Penalized Splines; Spectral Analysis; Stochastic Approxi-

mation Monte Carlo.

1 Introduction

Technological advances have facilitated an explosion in the number of studies that simul-

taneously record a large number of processes over time. In many applications, important

scientific information is contained in the variability attributable to oscillations at different

frequencies, which can be quantified through the power spectrum. Simultaneous analyses

of such data, which take into account all cross-time series dependencies as well as within-
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series frequency patterns, provide a comprehensive understanding of the underlying process.

However, such analyses are challenging when the data are high-dimensional and nonstation-

ary, since unwieldy sizes of spectral matrices evolving over time present methodological and

computational obstacles.

Figure 1: 64-channel TMS-evoked hdEEG from a first-episode psychosis patient.

Our motivating application comes from the analysis of 64-channel high-density electroen-

cephalography (hdEEG) with transcranial magnetic stimulation (TMS) in a patient who was

hospitalized during a first-break psychotic episode (Figure 1). TMS is a noninvasive proce-

dure that uses magnetic fields to excite brain cells. EEG is used to measure electrophysio-

logical activity simultaneously across multiple regions, or channels, of the brain. Traditional

EEG measures activity at 2-16 different channels. More recently, hdEEG, which can measure

activity from up to 256 channels, has been utilized to obtain a more comprehensive view of

brain activity. The power spectrum of hdEEG during TMS and its evolution provide dy-

namic, high-resolution neurobiological information with regards to neurological mechanisms,

disruptions of which have been observed in patients with a clinical diagnosis of schizophrenia

(Kaskie and Ferrarelli, 2018). The goal of our analysis is to investigate hdEEG during TMS

in our patient who is experiencing a first-break psychosis, a potential precursor to a future

diagnosis of schizophrenia, which could serve as a potential pre-clinical biomarker (Ferrarelli

et al., 2018).

Historically, a rolling-window procedure (Priestley, 1981) is used for the spectral analysis
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of nonstationary time series whose second-order structure evolves over time. This procedure

partitions the time series into prespecified overlapping time blocks and then estimates the

power spectrum at each of these blocks by smoothing the local periodogram, which is a noisy

estimate of the local power spectrum, across frequencies using tools such as local averaging

(Shumway and Stoffer, 2011). More recently, a variety of approaches to the spectral analysis

of multivariate nonstationary time series have been proposed. These methods can be roughly

grouped into three categories: methods that assume, in a manner similar to the rolling

window estimator, power spectra evolve smoothly over time (Dahlhaus, 2000; Guo and Dai,

2006; Sanderson et al., 2010; Park et al., 2014), methods that are based on data-driven

piecewise stationary approximations (Ombao et al., 2005; Davis et al., 2006), and adaptive

Bayesian methods that can approximate both abrupt and slowly varying dynamics (Zhang,

2016; Li and Krafty, 2019). However, these methods focus on the analysis of low-dimensional

collections of time series, becoming theoretically unjustified or computationally infeasible

when a large, or even moderate, number of simultaneous series are observed. The primary

contribution of this article is introducing an adaptive method for the spectral analysis of

high-dimensional time series that can capture both abrupt and slowly varying dynamics

efficiently while nonparmetricaly modeling spectral matrices.

Various approaches have been developed for estimating the spectral matrix of a high-

dimensional stationary time series. These include shrinkage estimators (Böhm and von Sachs,

2009; Fiecas et al., 2010; Fiecas and von Sachs, 2014; Schneider-Luftman and Walden, 2016)

and thresholding estimators (Sun et al., 2018; Fiecas et al., 2019). Unfortunately, these

methods are not readily extendable to the spectral analysis of nonstationary time series. A

common approach to analyzing high-dimensional time series is to use factor models, as they

not only induce a parsimonious and interpretable structure among the time series, but can

also overcome the curse of dimensionality when estimating high-dimensional covariance or

spectral matrices, see Ensor (2013) for a review. Although factor models have been used ex-

tensively for time-domain time series analysis, mostly in the econometrics literature, existing

factor models for frequency-domain analysis of time series are relatively few. These methods

are primarily framed in the stationary setting (Stoffer, 1999; Macaro and Prado, 2014), or
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are based on time-domain parametric formulations (West et al., 1999; Prado et al., 2001).

In addition to these time series factor models, factor models for the analysis of functional

time series can also be adapted for the analysis of multivariate power spectra (Kowal et al.,

2017). However, the direct application of such functional data-based procedures for spectral

analysis can only estimate predefined functions, such as univariate log-spectra and squared

coherences, but not the entire spectral matrix.

In this article, we present an adaptive nonparametric method for the spectral analysis

of high-dimensional nonstationary time series. Our approach is based on a novel frequency-

domain locally stationary factor model and scalable Markov chain Monte Carlo (MCMC)

techniques. The factor model is general in the sense that it allows for both real- and complex-

valued spectral matrices, which means that individual time series can fluctuate simultane-

ously or propagate in a lagged fashion. Real and imaginary parts of the local factor load-

ing matrices are modeled independently using a novel prior formulated through the tensor

product of penalized spline priors, which induce smooth structure across frequency, and mul-

tiplicative gamma process shrinkage priors (Bhattacharya and Dunson, 2011), which allow

infinitely many factors with the loadings increasingly shrunk towards zero as the column

index increases and mitigate the need for estimating the number of factors. The approach

adaptively divides a high-dimensional time series into an unknown random number of ap-

proximately stationary segments of variable lengths through stochastic approximation Monte

Carlo (SAMC). By approximating the likelihood function via products of local Whittle like-

lihoods, a scalable and efficient Gibbs sampling algorithm is developed. As in other adaptive

Bayesian methods (Rosen et al., 2012; Zhang, 2016; Li and Krafty, 2019), by averaging es-

timates across the distribution of partitions, the method not only produces estimates that

can capture abrupt changes, but also effectively approximates slowly varying processes.

The article is organized as follows. Section 2 presents the proposed frequency-domain

factor model for high-dimensional nonstationary time series. Section 3 describes the prior

distributions for the model parameters and an outline of the sampling scheme. Section 4

presents the results of extensive simulation studies. The proposed method is applied to real
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data in Section 5. Section 6 concludes with some discussion and future work. A detailed

description of the sampling scheme is given in the supplementary material.

2 The Model

2.1 The Locally Stationary Factor Model

This article considers P -dimensional vector-valued time series XXX t = (X1t, · · · , XPt)
′ that

can be represented through a novel locally stationary factor model. The model possesses

a Cramér representation with time-varying factor loadings, which decomposes XXX t into in-

formation accounted for by a set of Q common processes, or factors, plus an idiosyncratic

component. Formally, we model an RP -valued time series of length T , {XXX t : t = 1, · · · , T},

as

XXX t =

∫ 1

0

Λ(t/T, ω) exp (2πiωt)dZZZ(ω) + εεεt, (1)

where ZZZ(ω) is a Q-dimensional mean-zero orthogonal incremental process with independent

and Hermitian latent factors, such that E {dZZZ(ω)dZZZ∗(ζ)} is the identity matrix if ω = ζ and

zero otherwise, εεεt is a P -dimensional independent white noise, and Λ(u, ω) is a P ×Q time-

varying loading matrix that is a function of scaled time u ∈ [0, 1] and frequency ω ∈ R. The

complex-valued loading matrix Λ(u, ω) is periodic and Hermitian as a function of frequency

such that Λ(u, ω) = Λ(u, ω + 1) and Λ(u, ω) = Λ(u,−ω), where Λ is the conjugate of

Λ. The time-varying power spectrum defined through the locally stationary factor Cramér

representation in (1) is given by

f(u, ω) = Λ(u, ω)Λ(u, ω)∗ + Σε, u ∈ [0, 1], ω ∈ R,

where Λ∗ is the conjugate transpose of Λ, and Σε is the P × P diagonal covariance matrix

of εεεt. Hence, the time-varying spectrum f(u, ω) is a complex-valued positive definite P × P

Hermitian matrix. We assume that given u, each component of f(u, ·) possesses a square-

integrable first derivative as a function of frequency; given ω, each component of f(·, ω) is

continuous as a function of scaled time at all but a possibly finite number of points.
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Several aspects of the proposed locally stationary factor model should be noted. First, a

time series defined by the locally stationary factor model is locally stationary in the sense of

Li and Krafty (2019), which differs slightly from the definitions of local stationarity used by

Dahlhaus (2000) and Guo and Dai (2006). The model of Dahlhaus (2000) assumes a series of

transfer functions/loadings indexed by the length of the time series that converges to a fixed

function as the length increases. This structure is adopted primarily to allow for the fitting

of popular parametric models such as time-varying moving average models. Since we are

considering nonparametric estimation, in a manner similar to that in Guo and Dai (2006) and

Li and Krafty (2019), we directly use the limiting function. Further, similar to the method

of Li and Krafty (2019), the proposed model allows for a finite number of discontinuities

of the spectrum as a function of time. This is more flexible than the models of Dahlhaus

(2000) and Guo and Dai (2006), which require continuity as a function of time. Second,

through the introduction of the tensor product penalized spline and multiplicative gamma

process shrinkage prior (see details in Section 3.1), the proposed model allows for an infinite

number of factors with sufficiently decaying loadings. This enables any locally stationary

process in the sense of Guo and Dai (2006) or Li and Krafty (2019) to be represented as a

locally stationary factor model. The use of this prior also mitigates the sensitivity to the

number of factors. Nevertheless, the finite factor representation is used to overcome the

curse of dimensionality in estimating the power spectrum, where the number of factors Q is

typically smaller than P , inducing a reduced-rank characterization of the spectral matrix.

Lastly, a common concern about any factor analysis is that the loadings are not identifiable

without appropriate constraints, such as lower triangular structure for the loading matrix

(Geweke and Zhou, 1996; Carvalho et al., 2008). It should be emphasized that our goal

is not to identify or interpret the factors themselves, but to estimate time-varying power

spectral matrices. As noted by Bhattacharya and Dunson (2011) in the context of covariance

matrices, the shrinkage provided by the multiplicative gamma process prior enables valid

estimation, prediction, and inference on power spectrum despite the lack of identifiability of

the loadings.
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2.2 Piecewise Stationary Approximation

A locally stationary time series can be accurately approximated as a piecewise stationary

process (Adak, 1998; Guo and Dai, 2006), and our procedure involves a piecewise station-

ary approximation to the locally stationary factor model. For a time series of length T

{XXX t : t = 1, . . . , T}, a collection of partition points of the time series into L segments is de-

noted by ξξξ = (ξ0, . . . , ξL)′ where ξ0 = 0 and ξL = T such that XXX t is approximately stationary

within the segments {t : ξ`−1 < t ≤ ξ`} for ` = 1, . . . , L. Conditional on L and ξξξ,

XXX t ≈
L∑
`=1

∫ 1

0

Λ`(ω) exp (2πiωt)dZZZ(ω) + εεεt,

where for ` = 1, · · · , L, Λ`(ω) = Λ(u`, ω)δ`(t), δ`(t) is an indicator function such that

δ`(t) = 1 if t ∈ (ξ`−1, ξ`] and zero otherwise, and u` = (ξ` + ξ`−1) /2 is the midpoint of

the `th segment. Within the `th segment, the time series is approximately second-order

stationary with local power spectrum f(u`, ω) = Λ`(ω)Λ`(ω)∗ + Σε, where Σε is a diagonal

covariance matrix of εεεt. It should be noted that the number of segments L and partition

ξξξ are random variables whose prior distributions are given in Section 3.2. Estimates and

inferences will be obtained by averaging over the posterior distribution of the partitions and

the number of segments.

Conditional on approximately stationary segments, define the local discrete Fourier trans-

form (DFT) at frequency ωk` within segment ` as

YYY k` = T
−1/2
`

ξ∑̀
t=ξ`−1+1

XXX t exp(−2πiωk`t), k = 1, . . . , K`, ` = 1, . . . , L,

where T` is the number of time points in the `th segment, ωk` = k/T`, k = 1, · · ·K` are the

Fourier frequencies, and K` = b(T` − 1)/2c, which is the greatest integer that is less than

or equal to (T` − 1)/2. Under some regularity conditions (Brillinger, 2002, Theorem 4.4.1),

the YYY k` are approximately independent multivariate complex Gaussian random vectors with

mean 000 and covariance f(u, ωk`), denoted by YYY k`
app∼ CN [000, f(u, ωk`)]. The sampling scheme

follows from the distribution of the local DFTs conditional on the latent factors. In partic-

ular, we let DDDk` =
∫ ωk`

0
ZZZ(ω)dω, EEEk` = T

−1/2
`

∑ξ`
t=ξ`−1

εεεt exp(−2πiωk`t), and Λk` = Λ(u`, ωk`).
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It then follows from Brillinger (2002) that

YYY k` ≈ Λk`DDDk` +EEEk`,

where DDDk` is approximately independently distributed CN(000, IQ), IQ is a Q × Q identity

matrix, and EEEk` ∼ CN(000,Σε). This leads to the conditional Whittle likelihood

L(YYY | ΛΛΛ,DDD,Σε, L) ≈
L∏
`=1

K∏̀
k=1

P∏
p=1

{
σ−1ε,p exp

(
−σ−2ε,p

∣∣∣Yk`p − Λ
(p)
k` DDDk`

∣∣∣2)} ,
where YYY represents all local discrete Fourier transforms, ΛΛΛ and DDD represent the collections of

loadings and factors at all segments and Fourier frequencies, σ2
ε,p is the pth diagonal element

of Σε, Yk`p is the pth element of YYY k` and Λ
(p)
k` is the pth row of Λk`.

3 Adaptive Bayesian Spectral Analysis

In this section, we introduce an adaptive Bayesian approach that extends the approaches of

Rosen et al. (2012), Zhang (2016), and Li and Krafty (2019) to spectral analysis of high-

dimensional time series. Under this approach, a time series is adaptively partitioned into

a random number of approximately stationary segments, local spectra are estimated within

each segment, and time-varying power spectrum is obtained by averaging local estimates

over the distribution of partitions. First, in Section 3.1, we present the Bayesian estimation

procedure for a high-dimensional stationary time series. Then, in Section 3.2, we introduce

our proposed SAMC-based adaptive Bayesian sampling scheme for temporal partitioning of

a nonstationary time series.

3.1 Spectral Estimation for Stationary Time Series

To aid the presentation, in this section, we focus on estimating the spectral matrix, f(ω),

of a stationary time series. Under the factor formulation, f(ω) is expressed as a sum of

a nonnegative definite matrix Λ(ω)Λ(ω)∗ induced by the loadings, and a positive-definite

diagonal matrix Σε.
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Given the factor model, the conditional Whittle likelihood for a stationary multivariate

time series is given by

L(YYY | Λ,DDD,Σε) ≈
K∏
k=1

P∏
p=1

{
σ−1ε,p exp

(
−σ−2ε,p

∣∣∣Ykp − Λ
(p)
k DDDk

∣∣∣2)} ,
where YYY contains the discrete Fourier transforms of the time series, ΛΛΛ and DDD denote the

collections of loadings and factors, respectively, Ykp is the pth element of YYY k and Λ
(p)
k is the

pth row of Λk. To complete our model, we place prior distributions on ΛΛΛ and σε,p.

Prior distributions on the error variances are placed by assuming that σε,p, for p =

1, · · · , P , are independent Half-t(ν,Gε) with density p(σε,p) ∝ [1 + (σε,p/Gε)
2/ν]−(ν+1)/2,

σε,p > 0, where the hyperparameters ν and Gε are known constants (Gelman, 2006). In

practice, this distribution can be represented by a scale mixture of inverse gamma distribu-

tions (Wand et al., 2012): (σ2
ε,p|gε,p) ∼ IG(ν/2, ν/gε,p), gε,p ∼ IG(1/2, 1/G2

ε,p), where IG(a, b)

denotes an inverse Gamma distribution with density p(x) ∝ x−(a+1) exp(−b/x), x > 0.

A novel prior is placed on the P ×Q complex-valued loading matrix Λ(ω), such that the

real and imaginary parts of its entries are modeled independently through tensor products

of Bayesian penalized splines (Krafty et al., 2017; Li and Krafty, 2019) and multiplicative

gamma process shrinkage priors (Bhattacharya and Dunson, 2011). In particular, we use the

first S Demmler-Reinsch basis functions

<{Λpq(ω)} = αpq0 +
S−1∑
s=1

αpqs
√

2 cos(2πsω), (2)

={Λpq(ω)} =
S∑
s=1

βpqs
√

2 sin(2πsω). (3)

In this formulation, the real and imaginary parts of the loading matrix are modeled by peri-

odic even and odd linear splines, respectively, which has been found to improve performance

compared to a model that only accounts for periodic patterns but does not restrict the func-

tions to be odd or even (Krafty and Collinge, 2013). A Bayesian penalized spline can be

formulated by placing independent N
[
0, (2πs)−1 τ 2

]
priors on the coefficients conditional

on a smoothing parameter τ 2. This prior induces smoothness as a function of frequency

by regularizing integrated squared first derivatives. However, we also desire the loadings to
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decay for large q, so that the majority of information is captured by the first several factors.

To achieve this, we introduce a prior that is a tensor product of this penalized spline prior

with a gamma process shrinkage prior. Formally, we define the prior distributions as:

1. αpq0 ∼ N
(

0, ψ−1q,(re)

)
, αpqs ∼ N

(
0, (2πs)−1τ 2pq,(re)ψ

−1
q,(re)

)
for s = 1, · · · , S − 1.

2. βpqs ∼ N
(

0, (2πs)−1τ 2pq,(im)ψ
−1
q,(im)

)
for s = 1, · · · , S.

3. τpq,(re), τpq,(im) ∼ Half-t(ν,Gτ ) are the square roots of the smoothing parameters of the

real and imaginary parts, respectively, which control the roughness as a function of

frequency.

4. ψq,(·), q = 1, · · · , Q, and (·)=(re) or (im), are shrinkage parameters that control the

decay of the columns of the loading matrix, where ψq,(·) =
∏q

h=1 φh,(·), with independent

priors φ1,(·) ∼ Ga(a1, 1), φq,(·) ∼ Ga(a2, 1) for q ≥ 2, where a1 and a2 are fixed constants.

This formulation has three favorable properties. First, the choice of S provides a compro-

mise between loss of accuracy relative to the full-rank Bayesian smoothing spline (S = K)

and computational feasibility. We select S = 10 in our simulation studies and data analysis,

which accounts for at least 99.975% of the total variance of the full smoothing spline when

T ≤ 104 (Krafty et al., 2017), for considerable computational savings without sacrificing

model fit. Second, the shrinkage parameters ψq,(·) are stochastically increasing when a2 > 1,

which places more shrinkage toward zero as the column index increases. This formulation

allows an infinite number of factors with sufficiently decaying loadings, which not only pro-

vides a good approximation to the spectral representation of multivariate stationary time

series (Brillinger, 2002), but also reduces the sensitivity to the number of factors. Third, this

formulation allows for sampling from the posterior distribution through an efficient Gibbs

sampler which scales well to high-dimensional time series. The sampling scheme can also

be performed in parallel to further increase computational speed. Details of the sampling

scheme are provided in the supplementary material.
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3.2 Adaptive Spectral Estimation for Nonstationary Time Series

As described in Section 2, for the spectral analysis of a nonstationary time series, we adap-

tively estimate the unknown number and locations of the partition points. Conditional on

the partitions, local estimation is performed as in Section 3.1.

3.2.1 Priors

We first specify prior distributions for the number and locations of the partitions. Following

Rosen et al. (2012), a discrete uniform prior is placed on the number of partitions, such that

L ∼ U(1, Lmax), where Lmax is a fixed large integer that represents the maximum possible

number of possible segments. In general, Lmax is set to be large enough to capture all

possible approximately stationary segments, but if after running the procedure, we find that

the conditional probability of Lmax is not approximately zero, we increase Lmax. To ensure

that the large-sample local Whittle likelihood approximation holds, we choose a minimum

number of time points per segment, denoted by tmin. In our experience, tmin = 200 is

sufficient for our simulation studies and real data application. It should be noted that the

prespecified tmin is larger than the one used in Rosen et al. (2012); Li and Krafty (2019),

since we are working with high-dimensional time series which may require a larger sample

size for the Whittle approximation. Given the number of segments L, equal weights on

all possible locations of a partition point, conditional on the previous partition points, are

placed. Specifically, the prior for the partition ξξξ is

Pr(ξξξ | L) =
L−1∏
`=1

Pr(ξ` | ξ`−1, `),

where Pr(ξ` | ξ`−1, `) = 1/a`, and a` = T − ξ`−1− (L− `+1)tmin +1 is the number of possible

locations for the `th partition point.
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3.2.2 Sampling Scheme

We develop a stochastic approximation Monte Carlo (Liang et al., 2007, SAMC) sampling

scheme for automatic and adaptive estimation of the time-varying spectrum. Although

reversible jump Markov chain Monte Carlo (RJMCMC) has been shown to be effective for

adaptive spectral estimation of low-dimensional multivariate nonstationary time series (Li

and Krafty, 2019), the self-adjusting property of SAMC is more suitable for high-dimensional

nonstationary time series. We briefly describe the sampling scheme in this section and

provide technical details in the supplementary material.

To allow a more compact presentation, we define Ξ as the collection of all parameters, in-

cluding coefficients of basis functions, smoothing parameters, and shrinkage parameters. The

SAMC sampling scheme at iteration j simulates parameters from the following distribution

pϑj,`(L,Ξ) ∝
Lmax∑
`=1

p(L,Ξ)

eϑj,`
δ(L = `),

where ϑj,` ∈ Θ, for all j, and Θ is a compact set. We consider moving the current value of

the chain (Lj,Ξj
Lj) to a proposed value (Lj+1,Ξj+1

Lj+1). Each iteration consists of two types of

moves, within-model and between-model moves, which we outline below.

1. Between-model moves: propose Lj+1 by letting Lj+1 = Lj + 1 or Lj − 1.

� If Lj+1 = Lj + 1, a birth move is proposed. A new partition point is drawn by

first randomly selecting a current segment to split, and then randomly proposing

a new partition point within that segment. Conditional on Lj+1 and the new

partition, new smoothing and shrinkage parameters are proposed. Then, factors

and coefficients of the real and imaginary parts of the basis functions are updated

by using (S1), (S2), and (S3) in the supplementary materials, respectively.

� Or, if Lj+1 = Lj − 1, a death move is proposed. A partition point is randomly

selected to be deleted and a new segment is formed by combing the two adjacent

segments separated by this partition point. Then, the current smoothing and

shrinkage parameters of these two segments are used to form new smoothing
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and shrinkage parameters in the newly combined segment. Finally, factors and

coefficients of the real and imaginary parts of the basis functions are updated by

(S1), (S2), and (S3) in the supplementary materials, respectively.

� Let q(Lj+1,Ξj+1
Lj+1 | Lj,Ξj

Lj) be the proposal density, the proposed move is then

accepted with probability

A = min

{
1,

eϑj,Lj

eϑj+1,Lj+1

π(Lj+1,Ξj+1
Lj+1 | xxx)× q(Lj,Ξj

Lj | Lj+1,Ξj+1
Lj+1)

π(Lj,Ξj
Lj | xxx)× q(Lj+1,Ξj+1

Lj+1 | Lj,Ξj
Lj)

}
,

where xxx is the time series, π(·) is the posterior distribution, and eϑj,Lj and eϑj+1,Lj+1

are self-adjusting factors.

� Set ϑ∗ = ϑj + γj+1(eeej+1− p0), where p0 = 1/Lmax is a predefined probability, {γj}

is a positive sequence such that γj = j0/max(j0, j), j0 is a predefined constant,

eeej+1 = (ej+1,1, · · · , ej+1,Lmax)′ and ej+1,` = 1 if Lj+1 = `, and zero otherwise. If

ϑ∗ ∈ Θ, then we set ϑj+1 = ϑ∗; otherwise, set ϑ = ϑ∗+ccc∗, where ccc∗ is chosen such

that ϑ∗ + ccc∗ ∈ Θ.

2. Within-model moves: involve no change in the number of segments, i.e. Lj+1 = Lj.

A partition point ξ` is randomly selected to be relocated. Then, the factors and basis

function coefficients are drawn. These two moves are jointly accepted or rejected in

a Metropolis-Hasting step. Lastly, smoothing parameters, shrinkage parameters, and

error variances are updated via Gibbs sampling steps.

3.2.3 Choosing the Number of Factors Q

The infinite frequency-domain factor model with the tensor product penalized spline and

multiplicative gamma process shrinkage prior mitigates the sensitivity to the number of

factors by ensuring that the effective number of factors is small. From a practical standpoint,

we wish to choose a relatively small number of factors Q to save computational time without

sacrificing the estimation accuracy. A possible approach to choosing the number of factors is

to use a model selection criterion, such as WAIC (Watanabe, 2010). It is plausible to select

Q through WAIC for spectral analysis of a stationary time series. However, the applicability
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of WAIC to a nonstationary time series is doubtable since the values of locally Fourier-

transformed data depend on both the number and locations of the partitions which are

updated every MCMC iteration. It is also possible to treat Q as an unknown parameter,

putting a prior on Q and proceeding with a reversible jump Markov chain Monte Carlo or

SAMC. However, this strategy substantially increases computational complexity and may

lead to slow chain mixing.

We follow the adaptive method of Bhattacharya and Dunson (2011) to choose the effective

number of factors Q. At the jth iteration, suppose the current number of factors is Q(j) and

let eee` be a Q-variate vector with the hth element equal to 1 if the hth column of |Λk`| has all

its elements in a pre-specified small neighbourhood of zero, and 0 otherwize, for h = 1, · · · , Q,

where |·| denotes the complex modulus. Further, define eee = eee1 ◦, · · · , ◦ eeeL, where ◦ represents

the Schur or elementwise product of vectors and m(j) as the number of 1’s in eee, or the number

of redundant columns. Then, if m(j) 6= 0, we update the effective number of factors for the

(j + 1)th iteration as Q(j+1) = Q(j) − m(j) with probability p(j) = 1/ exp(a0 + a1j) and

discard the redundant columns in Λk`; if m(j) = 0, we update Q(j+1) = Q(j) + 1 with the

same updating proabbility p(j). When adding a factor, we sample all parameters from

the prior distribution to fill in additional columns, and otherwise, retain the parameters

corresponding to the nonredundant columns. The parameters a0 = 1 and a1 = 0.001 are

chosen so that adaptation occurs around every 10 iterations at the begining of the chain but

decreases in frequency expoentially fast.

4 Simulation Studies

In this section, we evaluate the proposed method through simulated datasets. In Section 4.1,

we investigate performance in estimating time-varying spectra of a piecewise stationary time

series with one partition as well as of a slowly varying process. In Section 4.2, we investigate

performance in accurately identifying partition points, both for a stationary time series, as

well as for a piecewise stationary time series with multiple partition points.
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4.1 Time-Varying Power Spectrum Estimation

Two processes are considered: piecewise stationary and slowly varying. For each process, we

fix the number of observations at T = 2048, and consider two different dimensions: P = 24

and P = 48. For each simulated time series, the time-varying power spectrum is estimated

by two methods. First, the proposed method with a total of 10000 iterations, where the first

2000 iterations are treated as burn-in, and with various numbers of factors, Q = 8, 10, 16.

We also applied the adaptive approach described in Section 3.2.3 to select Q. Second, the

rolling-window method (Shumway and Stoffer, 2011) that partitions the time series into B

overlapping time blocks and estimates the local power spectrum by smoothed periodogram

matrices with bandwidth chosen via generalized cross-validation (GCV) (Ombao et al., 2001).

In our simulations, we consider three temporal block sizes, B = 64, 128, 256.

We investigate the performance of an estimator of a spectral matrix f(u, ω) through the

mean integrated squared error (MISE), which can be obtained by averaging squared errors

across equally spaced time points and frequency grid as follows

MISE = [T (K + 1)]−1
T∑
t=1

K∑
k=0

∣∣∣∣∣∣f̂(t/T, ωk)− f(t/T, ωk)
∣∣∣∣∣∣2
F
,

where ||·||F denotes the Frobenius norm of a matrix, and f̂(t/T, ωk) is the estimated posterior

mean of f(t/T, ωk). Moreover, we also consider the following quantities,

MISEd = [T (K + 1)]−1
T∑
t=1

K∑
k=0

∣∣∣∣∣∣diag[f̂(t/T, ωk)]− diag[f(t/T, ωk)]
∣∣∣∣∣∣2 ,

MISEo = [T (K + 1)]−1
T∑
t=1

K∑
k=0

∣∣∣∣∣∣f̂(t/T, ωk)− f(t/T, ωk)
∣∣∣∣∣∣2
F∗
,

where || · ||F∗ denotes the Frobenius norm, discarding the diagonal entries such that ||A||F∗ =√∑P
i=1

∑
j 6=iA

2
ij. In other words, MISEd and MISEo are the mean squared errors of the

diagonal and off-diagonal elements, respectively.
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Figure 2: Rows 1-3: the true time-varying log power spectra: log f11(u, ω), log f22(u, ω), and
log f33(u, ω); and the real and imaginary parts of the cross-spectra: f21(u, ω), f31(u, ω), and
f32(u, ω) of process (4). Rows 4-6: the corresponding estimates based on the proposed method.
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4.1.1 Piecewise Stationary Process

We simulate 100 independent P -dimensional piecewise stationary time series of length T =

2048 from

Xt =

{
εεεt + Φ11εεεt−1 + Φ12εεεt−2 if 1 ≤ t ≤ 1024

εεεt + Φ21εεεt−1 + Φ22εεεt−2 if 1025 ≤ t ≤ 2048.
(4)

Each of the P × P coefficient matrices are block diagonal with P/3 blocks such that Φ11 =

IP/3 ⊗ Φ0
11, Φ21 = IP/3 ⊗ Φ0

21, Φ12 = IP/3 ⊗ Φ0
12, and Φ22 = IP/3 ⊗ Φ0

22, where IP/3 is a

P/3× P/3 identity matrix, ⊗ denotes the Kronecker product, and

Φ0
11 =

0.6 0 0
0.2 − 0.6 0
0.1 0.2 0.6

 ,Φ0
21 =

 0.6 0 0
0.2 0.6 0
−0.1 − 0.2 −0.6

 ,Φ0
12 = Φ0

22 =

0.3 0 0
0 − 0.3 0
0 0 0

 .

The white noise εεεt
i.i.d∼ Np(000,Ω) with Ω = IP/3⊗Ω0, where Ω0 has 1’s on the diagonal and 0.5

off the diagonal. The true P×P time-varying power spectrum is f(u, ω) = Φ(u, ω)ΩΦ(u, ω)∗

where Φ(u, ω) = I + Φ11 exp(−2πiω) + Φ12 exp(−4πiω) for u ∈ [0, 1/2], Φ(u, ω) = I −

Φ21 exp(−2πiω) + Φ22 exp(−4πiω) for u ∈ (1/2, 1] (Priestley, 1981, Chapter 9.4). Some of

the true time-varying log power spectra and cross-spectra, and their estimates under the

proposed procedure are displayed in Figures 2, which shows that the true power spectrum

changes abruptly at t = 1024 and the proposed approach can accurately capture these

dynamics.

4.1.2 Slowly Varying Process

We consider a slowly varying P -dimensional vector autoregressive process VAR(1) of length

T = 2048 and simulate 100 time series independently from

XXX t = ΘtXXX t−1 + εεεt, (5)

where εεεt
i.i.d∼ Np(000,Ω), Ω is as in Section 4.1.1 and Θt = IP/2 ⊗Θ0

t , with

Θ0
t =

(
θ01(t) 0.1

0 θ02(t)

)
,

and θ01(t) = −0.5 + t/T , θ02(t) = 0.7 − 1.4t/T for t = 1, · · · , T . The true P × P time-

varying power spectrum is f(t/T, ω) = Θ−1(t/T, ω)ΩΘ−1(t/T, ω)∗ where Θ(t/T, ω) = I +
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Θt exp(−2πiω) (Priestley, 1981, Chapter 9.4). Some of the true time-varying spectra and

cross-spectra, and their estimates under the proposed procedure are displayed in Figure 3,

which shows that the true power spectrm changes smoothly over time and the proposed

approach can successfully capture the slowly varying dynamics.

4.1.3 Results

The means and standard deviations of the three MISE criteria are presented in Table 1.

For both processes, the proposed method outperforms the rolling-window estimator, as the

former has smaller MISE, MISEd, and MISEo across both P = 24 and P = 48. This is

particularly true when estimating the off-diagonal elements as MISEo values corresponding

to the rolling-window method are 4-16 times larger than those corresponding to the pro-

posed factor model. Obtaining accurate estimates of the off-diagonal elements of a spectral

matrix is crucial since they can be used to derive many useful measures of between-series

relationships, such as coherence and partial coherence, which provide valuable information

for understanding many neurophysiological time series observed simultaneously. Moreover,

it should be noted that the proposed method has similar MISE values across the selected

number of factors Q. This can be attributed to using the multiplicative gamma process

shrinkage priors, which reduce the sensitivity to the number of factors. We applied the ap-

proach outlined in Section 3.2.3 to select Q adaptively. For Process (4), the average of the

estimated numbers of factors are 11.56 and 12.10 corresponding to P = 24 and 48, respec-

tively; for Process (5), the average of the estimated numbers of factors are 13.40 and 14.23

corresponding to P = 24 and 48, respectively. These results are consistent with the findings

in Table 1, indicating that the additional gains in estimation accuracy by using Q = 16 is

subtle.

Table 1 also reports the mean and standard deviation of run time per iteration of the

proposed method for each setting using Matlab 2020a and Windows 10 on a desktop computer

with a 3.6 GHz Intel Core i7 processor and 8 GB RAM. Although the run time increases

linearly with the number of factors Q and the dimensionality P , the proposed method is
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Figure 3: Rows 1-2: the true time-varying log power spectra: log f11(u, ω) and log f22(u, ω); and the
real and imaginary parts of the cross-spectra f21(u, ω) of process (5). Rows 3-4: the corresponding
estimates based on the proposed method.
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significantly more efficient compared to other Bayesian methods (see Table 3 of Li and

Krafty (2019) for a comparison), which are impractical in our simulation settings.

Table 1: Simulation results for the piecewise stationary and slowly varying processes. Based on
100 repetitions, means (standard deviation) of MISE, MISEd, MISEo obtained through the rolling-
window and the proposed factor model, and run time in seconds of the proposed factor model.

Settings P Rolling-window Factor Model
B = 64 B = 128 B = 256 Q = 8 Q = 10 Q = 16

Process (4): 24 MISE 23.75 (1.01) 14.73 (0.80) 9.29 (0.52) 4.24 (0.31) 3.33 (0.11) 3.27 (0.09)
Piecewise MISEd 2.54 (0.17) 1.95 (0.14) 1.91 (0.09) 1.08 (0.06) 0.31 (0.04) 0.24 (0.06)

MISEo 21.21 (0.90) 12.78 (0.73) 7.38 (0.47) 3.16 (0.26) 3.02 (0.11) 3.02 (0.06)
Time 0.41 (0.03) 0.58 (0.06) 0.95 (0.08)

48 MISE 92.42 (2.65) 56.19 (2.26) 33.33 (1.58) 10.00 (0.36) 9.31 (0.12) 9.29 (0.14)
MISEd 5.07 (0.23) 3.89 (0.17) 3.81 (0.10) 3.61 (0.07) 2.79 (0.06) 2.81 (0.05)
MISEo 87.35 (2.53) 52.30 (2.17) 29.52 (1.53) 6.39 (0.34) 6.35 (0.22) 6.32 (0.21)
Time 0.76 (0.05) 0.91 (0.06) 1.62 (0.14)

Process (5): 24 MISE 23.17 (2.58) 17.23 (1.74) 14.91 (1.17) 4.04 (0.06) 3.98 (0.06) 3.97 (0.06)
Slowly-varying MISEd 6.13 (0.37) 6.02 (0.30) 6.23 (0.31) 1.72 (0.02) 1.69 (0.02) 1.70 (0.03)

MISEo 17.04 (2.26) 11.21 (1.50) 7.68 (0.99) 2.32 (0.05) 2.29 (0.04) 2.27 (0.02)
Time 0.38 (0.07) 0.47 (0.15) 0.94 (0.20)

48 MISE 76.92 (7.00) 52.48 (4.99) 37.79 (3.27) 8.46 (0.12) 8.15 (0.08) 8.15 (0.10)
MISEd 12.30 (0.64) 12.03 (0.47) 13.04 (0.38) 4.24 (0.05) 4.12 (0.03) 4.13 (0.04)
MISEo 64.63 (6.45) 40.56 (4.61) 24.75 (3.00) 4.22 (0.09) 4.03 (0.06) 4.02 (0.07)
Time 0.57 (0.10) 0.76 (0.13) 1.33 (0.26)

4.2 Estimation of Partitions

In this section, we focus on evaluating the frequentist properties of the proposed method

in estimating the number and location of partition points. First, to demonstrate that the

proposed method can correctly identify a stationary process, we use the first piece of pro-

cess (4), that is, we simulate one hundred 48-dimensional time series of length T = 1024

independently from

XXX t = εεεt + Φ11εεεt−1 + Φ12εεεt−2, (6)

where Φ11, Φ12, and εεεt are as in Section 4.1.1. Second, we simulate one hundred 48-

dimensional time series independently from

XXX t =


εεε
(1)
t + Φ11εεε

(1)
t−1 + Φ12εεε

(1)
t−2 if 1 ≤ t ≤ 500,

εεε
(1)
t + Φ21εεε

(1)
t−1 + Φ22εεε

(1)
t−2 if 501 ≤ t ≤ 1000,

εεε
(2)
t + Φ31εεε

(2)
t−1 + Φ32εεε

(2)
t−2 if 1001 ≤ t ≤ 2000,

εεε
(2)
t + Φ41εεε

(2)
t−1 + Φ42εεε

(2)
t−2 if 2001 ≤ t ≤ 4000,

(7)
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where Φ11, Φ12, Φ21, and Φ22 are as in Section 4.1.1, and Φ31 = Φ21, Φ32 = Φ22. We define

Φ41 and Φ42 as block diagonal matrices such that Φ41 = IP/3 ⊗ Φ0
41 and Φ42 = IP/3 ⊗ Φ0

42,

where

Φ0
11 =

1.32 0 0
0.2 − 0.6 0
0.1 0.2 0.6

 ,Φ0
42 =

−0.81 0 0
0 − 0.3 0
0 0 0

 .

The white noise terms εεε
(1)
t , εεε

(2)
t are independent zero-mean P -dimensional Gaussian random

variables whose covariance matrices have unit variances and pairwise correlations of 0.5 and

0.9, respectively. This process has both short segments (with 500 observations) and long

ones (with 2000 observations), and the change, at t = 1000, in the off-diagonal elements of

the covariance of the error term is subtle compared to the other changes.

Table 2: Simulation results for processes (6) and (7) based on 100 repetitions: means (standard
deviations) of the posterior probabilities Pr(L|XXX), means of MISE obtained through the rolling-
window estimator (RW), the local average estimator (LA), and the proposed factor model.

Settings Number of segments L MISE
L = 1 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7 Factor Model RW LA

Process (6) 0.940 0.057 0.030 0 0 0 0 4.29 11.42
(0.079) (0.073) (0.007) (0) (0) (0) (0) (0.07) (1.32)

Process (7) 0 0 0.051 0.889 0.060 0 0 14.42 63.22
(0) (0) (0.182) (0.194) (0.103) (0) (0) (2.42) (3.43)

The proposed method was run using Q = 12 factors for 10,000 iterations with a burn-

in of 2,000. Table 2 reports the mean and standard deviation of the estimated posterior

probabilities of the numbers of segments, Pr(L|XXX). For process (6), the proposed method

correctly identifies a stationary process with a high probability: P̂r(L = 1|XXX) = 0.940. For

process (7), the proposed method also correctly assigns the highest posterior probability to

L = 4, i.e., P̂r(L = 4|X) = 0.889. In addition, we compare our method with the other two

methods in terms of MISE. To ensure fair comparisons, the local averaging estimator that

treats the time series as a stationary process in advance and then smooths the periodogram

across frequencies via local averaging was used for Process (6); the rolling window estimator

discussed in Section 1 with B = 256 was used for Process (7). Consistent with the results in

Section 4.1, the proposed method outperforms the rolling-window estimator for Process (7).

More importantly, the proposed method has smaller MISE compared to the local averaging

estimator for Process (6) even thought it can be considered an oracle estimator by treating
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the time series as stationary.

5 Analysis of TMS-Evoked High-Density EEG

Abnormal neurophysiological activity is consistently observed in patients with schizophrenia

and is associated with poor cognitive ability. To examine biological correlates, identify po-

tential biomarkers, and to guide individualized treatment of mental illness, physicians often

use hdEEG to measure electrophysiological activity simultaneously across multiple regions,

or channels, of the brain. Transcranial magnetic stimulation (TMS) is a noninvasive method

of brain stimulation that uses an insulated coil placed over a chosen location of the scalp

to induce a magnetic field that excites cells in the cortex of the brain. Concurrent TMS

and hdEEG are used to record TMS-evoked local and general brain activity with millisec-

ond precision. Time-varying spectral analysis of hdEEG during TMS provides important

neurobiological information that can be used to assess and guide treatments of psychiatric

disorders (Kaskie and Ferrarelli, 2018).

We demonstrate the proposed method through the analysis of hdEEG during TMS from

a patient during hospitalization for their first psychotic episode. The epoch considered

was taken from 1000 milliseconds before and 1000 milliseconds after a TMS delivery to the

primary motor cortical area of the patient’s brain with a sampling rate of 5000 samples per

second (5000 Hz). Data were preprocessed using the TMSEEG Matlab GUI (Atluri et al., 2016)

where signals were downsampled to 1000 Hz. Independent component analysis (ICA) was

used to remove pulse and ripple artifacts, IIR bandpass (1-80 Hz) and notch filters (60 Hz)

were applied, and signals were referenced and standardized to unit variance. The resulting

data, which are displayed in Figure 1, are a 64-dimensional time series, i.e., P = 64, of length

T = 2000.

The proposed method was run for 10,000 iterations with burn-in of 5,000 where the

number of factors was selected adaptively. The goal of our study is to analyze the entire

time-varying spectral matrix, f(u, ω), as well as certain functions of the power spectrum.
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Specifically, three types of quantities are of interest. First, the time-varying power spectra

fjj(u, ω), j = 1, · · · , P and the pairwise squared coherences

ρ2jk(u, ω) = |fjk(u, ω)|2/[fjj(u, ω)fkk(u, ω)], j, k = 1, · · · , P,

can be easily estimated. Second, the proposed adaptive Bayesian method allows one to

conduct inference on frequency-collapsed functionals. In particular, power within several

frequency bands, including the beta band (16-31 HZ), contains important neurophysiological

information (Ferrarelli et al., 2018). Frequency-band collapsed measures can be computed as

integrals of the power spectra. For example, the time-varying beta-band collapsed spectral

matrices are given by

fβ(u) =

∫ 31

16

f(u, ω)dω. (8)

Third, the time-varying frequency-collapsed squared coherences can be derived to investigate

connectivity between brain regions across time at frequency bands of interest. A commonly

used measure of local connectivity is the beta-band coherences. The beta-band squared

coherence between channels j and k is defined as

ρ2,βjk (u) =

∣∣∣∣∫ 31

16

fjk(u, ω)dω

∣∣∣∣2 /{fβjj(u)fβkk(u)
}
,

where fβjj(u) =
∫ 31

16
f(u, ω)dω is the time-varying beta-band power of channel j. The following

sections provide the results of our analyses of the TMS-evoked hdEEG.

5.1 Time-Varying Power Spectra and Squared Coherences

Figure 4 presents the estimated time-varying log-power spectra and the corresponding pair-

wise squared coherences from three channels: C1, F1, and P1, which are located in the

primary motor cortex, the frontal cortex, and the parietal cortex, respectively. It is clear

that the log-power spectra and squared coherences changed abruptly, resulting in three ap-

proximately stationary segments, which can be identified as three periods: before TMS (the

baseline EEG), immediately after TMS, and recovering from TMS. In general, our results

indicate that the estimated power spectra increased at all frequencies after TMS delivery. It
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Figure 4: Estimates of the time-varying log spectra (first row) and pairwise squared coherences
(second row) of the TMS evoked-EEG in channels C1, F1, and P1.
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Figure 5: The estimated beta-band log power of 64-channel hdEEG at time points: (a) -100 ms,
(b) 100 ms, and (c) 800 ms; and (d) the difference of beta-band log power between time points 100
ms and -100 ms.
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should be noted that channel C1, which is located in the primary motor cortex (the region

where TMS was induced), had a greater power increase compared to channels F1 and P1.

The squared coherence between C1 and F1 and between C1 and P1 decreased dramatically

at all frequencies after TMS delivery, indicating that the stimulation restricts the correla-

tion between the primary motor cortical area and other regions of the brain. Interestingly,

channels F1 and P1, which are located far apart, experienced an increase in the squared

coherence after the TMS delivery. This calls for further research on how channels that are

not in actively stimulated regions behave after TMS, which has not been explored in the

biomedical literature.

5.2 Time-Varying Frequency-Collapsed Power Spectra

Figure 5 (a)-(c) presents topoplots of the estimated beta-band collapsed spectral matrices

defined in (8) at different time points: t = −100, 100, and 800 milliseconds (ms). Comparing

Figure 5 (a) and (b), we see that the log beta-band power increased drastically after the TMS

delivery (t = 100 ms) for all channels. However, as indicated by Figure 5 (d), which displays

the differences of log beta-band power between time points 100 ms and -100 ms, the amount

of increases of the beta-band power in the primary motor cortex is larger than that in the

other areas. Moreover, some prefrontal and parietal cortices had the smallest amount of

increase in beta-band power. It should be noted that similar characteristics in gamma-band

spectral matrices have been observed in patients with schizophrenia (Huber et al., 2008).

Our findings suggest that our patient, who has experienced a first psychotic episode but

does not yet meet the clinical requirement for a diagnosis of schizophrenia, exhibits some

neurophysiological characteristics that are similar to those in patients with schizophrenia

compared to healthy controls, which could potentially serve as a subclinical biomarker.

5.3 Time-varying Frequency-Collapsed Coherences

Figure 6 displays the estimated beta-band squared coherence of C1 with respect to all other

channels at time points: t = −100, 100, and 800 ms. Broadly, during the baseline period
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Figure 6: Estimates of beta-band squared coherences of C1 with respect to all other channels at
different time points

(t = −100 ms), C1 is connected to the channels that are also within the primary motor

cortex, as well as to channels within the right hemisphere of the parietal and frontal cortexes.

However, after the TMS (t = 100 ms) delivery, C1 only retains high beta-band coherences

within the primary motor cortex. Beta-band connectivity between C1 and other brain regions

decreases or disappears. When t = 800 ms, the connectivity between C1 and the right

hemisphere of the parietal and frontal cortexes begins to be restored. This phenomenon

can be further illustrated in Figure 7, which shows the estimated time-varying beta squared

coherences between C1 and Cz , and C1 and TP10 along with 95% credible intervals (as the

2.5th and 97.5th empirical percentiles of the MCMC iterates after the burn-in period). It

should be noted that Cz is located close to C1, while TP10 is located at the right hemisphere

of the parietal cortical area.
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Figure 7: Estimated of beta-band squared coherences of C1 with respect to Cz (left) and TP10
(right) over time with 95% pointwise credible intervals.
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6 Final Remarks

This article introduces the first adaptive approach to analyzing the time-varying power

spectrum of a high-dimensional nonstationary time series. A novel frequency-domain factor

model is developed using a prior that is the tensor product of penalized splines and multi-

plicative gamma process priors. A scalable MCMC algorithm is developed for model fitting,

allowing for inference on both abrupt and slowly varying processes. We conclude this article

by discussing some limitations and related future extensions. First, the proposed procedure

is designed for the analysis of a single high-dimensional time series. However, in many ap-

plications, interest lies in the analysis of replicated high-dimensional time series in order to

understand how time-varying spectra are associated with other covariates, such as clinical

symptoms. A possible extension of the proposed method for the analysis of replicated time

series could involve adaptively dividing the grid of time and covariate values into approxi-

mately stationary blocks in a manner similar to that proposed in the univariate setting by

Bruce et al. (2018). Second, our analysis of high-dimensional time series assumes that all

time series have the same sampling rate. However, time series can be sampled at different

rates. For example, one could be interested in the joint spectral analysis of other physiological

signals, such as heart rate variability, which is typically sampled around 1 Hz, with hdEEG.

Future research will focus on developing adaptive spectral analysis of high-dimensional time

series with different sampling rates.

7 Supplementary Materials

Supplementary materials are available online, including a pdf file that includes details of the

sampling scheme, a convergence assessment tool for SAMC and its application to the TMS-

evoked EEG data analysis, and additional simulation results. Matlab code for implementing

the proposed method are provided.
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