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We propose a method for analyzing possibly nonstationary time series by adaptively dividing

the time series into an unknown but finite number of segments and estimating the correspond-

ing local spectra by smoothing splines. The model is formulated in a Bayesian framework,

and the estimation relies on reversible jump Markov chain Monte Carlo (RJMCMC) meth-

ods. For a given segmentation of the time series, the likelihood function is approximated via

a product of local Whittle likelihoods. Thus, no parametric assumption is made about the

process underlying the time series. The number and lengths of the segments are assumed

unknown and may change from one MCMC iteration to another. The frequentist properties

of the method are investigated by simulation, and applications to EEG and the El Niño

Southern Oscillation phenomenon are described in detail.
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1 Introduction

Many time series are realizations of nonstationary random processes, hence estimating their

time varying spectra may provide insight into the physical processes that give rise to these
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time series. For example, EEG time series are typically nonstationary, and estimating the

time varying spectra based on the EEG of epilepsy patients may lead to methods capable

of predicting seizure onset. Similarly, analyzing the time varying spectrum of the Southern

Oscillation Index (SOI) may further our knowledge of the frequency of the El Niño Southern

Oscillation (ENSO) phenomenon and its impact on global climate.

This paper proposes methodology for analyzing possibly nonstationary time series by adap-

tively dividing the time series into an unknown but finite number of segments and estimating

the corresponding local spectra by smoothing splines. The model is formulated in a Bayesian

framework, and the estimation relies on reversible jump Markov chain Monte Carlo (RJM-

CMC) methods. For a given segmentation of the time series, the likelihood function is

approximated via a product of local Whittle likelihoods. Thus, no parametric assumption

is made about the process underlying the time series. The number of segments and the

length of each segment are assumed unknown and may change from one MCMC iteration to

another.

The basic assumptions of the model are that, conditional on the location and number of

segments, the time series is piecewise stationary and that the spectrum for each segment is

smooth. A detailed description of the model is given in Section 3. In addition to representing

time series that have regime changes, the model can be used to approximate slowly varying

processes such as locally stationary processes defined in Dahlhaus (1997), or time varying

autoregressive processes for which the parameters are allowed to vary slowly with time; see

Adak (1998) for details.

Several authors have considered the estimation of locally stationary processes under a variety

of assumptions. The estimators that were developed by Dahlhaus (1997) for his evolutionary

spectra are consistent, but the method is not computationally efficient and can be problem-

atic when the time series is long. Chiann and Morettin (1999) proposed a wavelet-based

version of the estimator proposed by Dahlhaus (1997). Various other approaches have been

suggested to overcome the computational difficulty. Ombao et al. (2001) proposed nonpara-

metric estimators based on smooth local exponential functions. Guo et al. (2003) extended

the work of Ombao et al. (2001) to allow for simultaneous smoothing in both the time and
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frequency domains.

Qin andWang (2008) use the basic method of Guo et al. (2003) and focus on applying it to the

analysis of EEG time series. Our method also estimates a time varying spectral density but

differs from Qin and Wang (2008) in three important ways. First, our approach assumes no

pre-specified time intervals over which the process is considered locally stationary. Instead,

our technique uses the data to determine the size and location of the piecewise stationary time

intervals. Second, our estimate of the time varying spectrum is computed by averaging over

a range of smoothing parameters, where the averaging is with respect to the posterior density

of the smoothing parameters. In contrast, Qin and Wang (2008) estimate a single value of

the smoothing parameter which is then plugged in to estimate the time varying spectrum.

Using a single value for the smoothing parameter rather than averaging over values of the

smoothing parameter results in a wider range of estimates, as demonstrated in Section 4.

Third, our approach can capture abrupt changes as well as recover changes that occur more

gradually. In Section 4.2 we show that although our approach is piecewise, conditional on a

specific partition, it is not necessarily piecewise, unconditional on the partition points, due

to the uncertainty surrounding the number and location of the partition points. Indeed, it

will only be piecewise stationary if the posterior probability that a partition point occurs at

a specific time is equal to 1, for all partition points.

Rosen et al. (2009) estimate the log of the local spectrum using a Bayesian mixture of splines.

The basic idea of this approach is to first partition the data into small sections. It is then

assumed that the log spectral density of the evolutionary process in any given partition is a

mixture of individual log spectra. A mixture of smoothing splines model with time varying

mixing weights is used to estimate the evolutionary log spectrum. The mixture model is fit

using MCMC techniques that yield estimates of the log spectra of the individual subsections.

In contrast to Rosen et al. (2009), the current paper does not use predetermined partitions.

Rather, it adaptively divides the time series into segments of variable lengths, rendering

the mixture model unnecessary. In addition to more accurate estimation, this also leads to

computational saving.

Analyzing locally stationary time series can also be done in the time domain. Kitagawa
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and Akaike (1978) suggested fitting piecewise autoregressive (AR) models. Wood et al.

(2011) propose a class of models for analyzing possibly nonstationary time series, formed

as a mixture of AR models with a common but unknown lag, whose mixing weights are a

function of time. The model parameters, including the number of mixture components, are

estimated via MCMC methods. Lau and So (2008) use a Dirichlet process mixture of AR

processes to flexibly model the predictive density of a time series. Their approach does not

handle structural breaks in the time series and their mixture weights are not functions of

time. Davis et al. (2006) suggested fitting piecewise AR models using minimum description

length and a genetic algorithm for solving the difficult optimization problem. Although Davis

et al. (2006) showed that their simulation results for a few locally (and piecewise) stationary

AR models perform better than those of Ombao et al. (2001), it is clear that, generally, a

parametric technique will outperform a nonparametric technique when the parametric model

is correct.

A different time-domain approach is to model the parameter evolution over time. An ex-

cellent treatment of the problem based on state-space models with smoothness priors is the

influential text by Kitagawa and Gersch (1996). This approach was expanded upon by many

authors, for example, West et al. (1999) allowed the parameters of an AR process to change

over time by modeling them as a random walk, assuming that the maximum lag in the

autoregressive process is fixed. This assumption was relaxed by Prado and Huerta (2002).

Gerlach et al. (2000) provide a sampling scheme that allows for smooth parameter evolution,

as well as structural breaks in the parameters.

The paper is organized as follows. Sections 2 and 3 present the model and priors for stationary

and nonstationary time series respectively. Section 4 outlines the proposed Bayesian inference

as well as provides illustrative examples. Section 5 reports results of a simulation study, and

Section 6 illustrates the methodology with the analysis of EEG data and indicators for the

ENSO phenomenon.
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2 Spectral Estimation for Stationary Time Series

2.1 Model

Our approach to the problem of estimating local spectra is best understood by first explaining

the technique for estimating the spectral density of a stationary process. Suppose that a

stationary time series, {Xt}, has a bounded positive spectral density, f(ν), for −1/2 < ν ≤
1/2. Given a realization, x1, . . . , xn, the periodogram of the data at frequency ν (measured

in cycles per unit time) is

In(ν) =
1

n

∣∣∣∣∣
n∑

t=1

xt exp(−2πiνt)

∣∣∣∣∣

2

.

Let νk = k/n, for k = 0, . . . , n − 1, be the Fourier frequencies. Whittle (1957) showed

that, under appropriate conditions, for large n the likelihood of xxx = (x1, . . . , xn)′, given

fff = (f(ν0), . . . , f(νn−1))
′, can be approximated by

p(xxx
∣∣ f) = (2π)−n/2

n−1∏

k=0

exp

{
−1

2

[
log f(νk) + In(νk)/f(νk)

]}
. (1)

Note that in (1), there are only [n/2] + 1 distinct observations since the spectral density and

the periodogram are both even functions of ν. The notation [n] means the largest integer

less than or equal n. For ease of notation, in what follows, we assume that n is even. Letting

yn(νk) = log In(νk) and g(νk) = log f(νk), the representation (1) suggests the log-linear

model

yn(νk) = g(νk) + εk, (2)

where the εk’s are independent, εk ∼ log(χ2
2/2) for k = 1, . . . , n/2 − 1, and εk ∼ log(χ2

1) for

k = 0, n/2. Representation (2) was used by a number of authors for nonparametric estimation

of the log spectral density. For example, Wahba (1980) used a frequentist approach for

estimating g(ν) via cubic smoothing splines. Carter and Kohn (1997) achieved the same

goal in a Bayesian framework by expressing equation (2) in a state-space form. Carter and

Kohn (1997) approximated the error distribution in (2) by a mixture of five normal densities

and introduced latent component indicators to facilitate the estimation.
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Rather than using (2) for estimating g(ν), we use (1) directly. The next section provides

details on the prior distributions placed on g(ν).

2.2 Priors

To place a prior on g(νk), we follow Wahba (1990, p.16), and express g(νk) as the sum of its

linear and nonlinear components, so that

g(νk) = α0 + α1νk + h(νk),

where h(νk) is the nonlinear component. We place a linear smoothing spline prior on the

vector hhh = (h(ν0), . . . , h(νn/2))
′, which means that

h(ν) = τ

∫ ν

0

W (v)dv

or equivalently hhh ∼ N(000, τ 2ΩΩΩ), where τ 2 is a smoothing parameter and (ΩΩΩ)ij = min(νi, νj).

The parameters α0 and α1 are the values of g(ν) and its first derivative at ν = 0, respectively.

The symmetry and periodicity of the spectral density mean that (∂g(ν)/∂ν)|ν=0 = 0. Accord-

ingly, α1 is set to be identically zero, and the prior on α0 is N(0, σ2
α), for some large σ2

α. To

complete the prior specification on g(ν), we follow Gelman (2006) and assume τ 2 ∼ U(0, cτ2),

where cτ2 is a known large value. We express hhh as a linear combination of basis functions,

hhh = XXXβββ, where the columns of the design matrix XXX are the Demmler-Reinsch basis func-

tions evaluated at the Fourier frequencies, and βββ is vector of unknown coefficients. We follow

Wood et al. (2002) and Rosen et al. (2009) and retain only the basis functions corresponding

to the J = 10 largest eigenvalues, resulting in significant computational saving. For linear

smoothing splines, the jth column of XXX, j = 1, . . . , J , is
√

2 cos(jπννν) (see Eubank (1999)),

where ννν = (ν0, . . . , νn/2)
′. The prior on βββ is N(0, τ 2IJ), where IJ is a J × J identity matrix.

2.3 Sampling Scheme

The parameters α0, βββ and τ 2 are drawn from the posterior distribution p(α0, βββ, τ 2
∣∣ yyy),

where yyy = (yn(ν0), . . . , yn(νn/2))
′, using MCMC methods, as follows.
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1. α0 and βββ are sampled jointly via a Metropolis-Hastings (M-H) step from

p(α0, βββ
∣∣ τ 2, yyy,XXX) ∝ exp

{
−1

2

n−1∑

k=0

[α0 +xxx′kβββ+ exp(yn(νk)−α0−xxx′kβββ)]− α2
0

2σ2
α

− 1

2τ 2
βββ′βββ
}
,

(3)

where xxx′k is the kth row of XXX.

2. τ 2 is sampled from the truncated inverse gamma distribution, IG(J/2−1, 1
2
βββ′βββ), whose

density is

p(τ 2
∣∣ βββ) ∝ (τ 2)−J/2 exp

(
− 1

2τ 2
βββ′βββ
)
, τ 2 ∈ (0, cτ2 ]. (4)

3 Spectral Estimation for Nonstationary Time Series

3.1 Model

To describe our proposed model, let a time series consist of an unknown number of segments,

m, and let ξj,m be the unknown location of the end of the jth segment, j = 1, . . . ,m,

where ξ0,m and ξm,m are t = 0 and t = n, respectively. Then conditional on m and ξξξm =

(ξ0,m, . . . , ξm,m)′, we assume that the process {Xt} is piecewise stationary. That is,

Xt =
m∑

j=1

X
(j)
t δj,m(t), (5)

where, for j = 1, . . . ,m, the processes X(j)
t are independent and stationary with spectral

density fj,m(ν), and δj,m(t) = 1 if t ∈ [ξj−1,m + 1, ξj,m] and 0 otherwise.

Consider a realization xxx = (x1, . . . , xn)′ from process (5), where the number and locations

of the stationary segments are unknown. Let nj,m be the number of observations in the jth

segment. We assume that nj,m ≥ tmin, where tmin is taken to be large enough in order for the

local Whittle likelihood to provide a good approximation to the likelihood. Given a partition

of the time series xxx, the jth segment consists of the observations xxxj,m = {xt : ξj−1,m + 1 ≤
t ≤ ξj,m}, j = 1, . . . ,m, with underlying spectral densities fj,m and periodograms Inj,m

,

evaluated at frequencies νkj = kj/nj,m, 0 ≤ kj ≤ nj,m − 1. For a given partition ξξξm, the
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approximate likelihood of the time series is thus

L(f1,m, . . . , fm,m
∣∣ xxx, ξξξm) =

m∏

j=1

(2π)−nj,m/2

nj,m−1∏

kj=0

exp
{
−1

2

[
log fj,m(νkj)+Inj,m

(νkj)/fj,m(νkj)
]}
.

Prior distributions are placed on all the parameters, including the number of segments, m,

and the partition, ξξξm.

3.2 Priors

For a given number of segments, m, the following priors are used.

1. The priors on the log spectra gj,m(ν) = log fj,m(ν), j = 1, . . . ,m, are assumed to be

independent and are as given in Section 2.2.

2. The prior on the partition ξξξm is

Pr(ξξξm
∣∣ m) =

m−1∏

j=1

Pr(ξj,m
∣∣ ξj−1,m,m),

where Pr(ξj,m = t
∣∣ m) is a discrete uniform such that

Pr(ξj,m = t
∣∣ m) = 1/pjm

for j = 1, . . . ,m − 1. The number of available locations for partition point ξj,m is

denoted by pjm and is equal to n − ξj−1,m − (m − j + 1)tmin+1. This prior states

that the first partition point ξ1,m is equally likely to occur at any point in the time

series subject to the constraint that there are at least tmin observations in each of

the m segments. The prior on subsequent partition points is similar and states that,

conditional on the previous partition point, the next partition point is equally likely to

occur in any available location, again subject to the constraint that there are at least

tmin observations in each segment. We believe that this prior is intuitively appealing,

but our framework can accommodate other priors for the partition points.

The prior on the number of segments is a discrete uniform with a maximum number M ,

so that Pr(m = k) = 1/M for k = 1, . . . ,M . Typically M is chosen to be large enough to
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capture all visible locally stationary segments but if, after running the procedure, we find

that Pr(m = M |xxx) 6≈ 0 then we increase M .

4 Bayesian Inference

4.1 Sampling Scheme

Each MCMC iteration consists of two types of moves, within-model moves and between-

model moves. An outline of the sampling scheme follows. Further details are given in the

Appendix.

Within-model moves

Given a current number of segments mc, a single partition point ξk∗,mc is proposed to be

relocated. The corresponding basis function coefficients in the pair of adjacent segments

affected by the relocation of the partition point are then updated. These two steps are

jointly accepted or rejected in a M-H step. The smoothing parameters are then updated in

a Gibbs step as in equation (4). See the Appendix for details.

Between-model moves

The number of segments is either proposed to increase by 1 (birth) or decrease by 1 (death),

so that mp = mc + 1 or mp = mc − 1, respectively.

• If a birth is proposed (mp = mc + 1), then an additional partition point is drawn by

first selecting a segment to split and then selecting the new partition point from within

this segment. Finally, two new smoothing parameters for the new segments are formed

from the current single smoothing parameter, and conditional on these new smoothing

parameters, two new sets of basis function coefficients are drawn.

• If a death is proposed (mp = mc− 1), then a partition point is selected to be removed.

A single new smoothing parameter is then formed from the adjacent pair of current

smoothing parameters, and conditional on the new smoothing parameter, a new set of

basis function coefficients is proposed.
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4.2 Illustrative Examples

To illustrate the methodology and to demonstrate that our approach can capture changes

that occur smoothly as well as abruptly, we present results based on single realizations from

a piecewise autoregressive process and a slowly varying autoregressive process. The model

is fitted to the data with a total of 10,000 iterations, 2000 of which are used as burn-in. The

value of tmin is set to 40, and the number of the spline basis functions is set to 10.

Piecewise autoregressive process

A realization is drawn from the process

xt =





0.9xt−1 + ε
(1)
t for 1 ≤ t ≤ 300

−0.9xt−1 + ε
(2)
t for 301 ≤ t ≤ 600

1.5xt−1 − 0.75xt−2 + ε
(3)
t for 601 ≤ t ≤ 1000,

(6)

where ε(i)t
iid∼ N(0, 1), i = 1, 2, 3. Figure 1 presents a realization from model (6). Figure 2

0 100 200 300 400 500 600 700 800 900 1000
−10

−8

−6

−4

−2

0

2

4

6

8

t

xt

Figure 1: A realization from model (6).

displays the three true log spectral densities (solid line) corresponding to model (6), along

with the spline fits (dashed). The posterior probability of three segments is 99.75%. The

posterior means of the partition points are ξ̂1,3 = 300.5 and ξ̂2,3 = 597.9.
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Figure 2: Log spectral densities (solid) and their estimates (dashed) for model (6).

Slowly varying autoregressive process

We now illustrate how AdaptSPEC can model time series that change slowly over time as

well as those time series in which there is an abrupt change. We generate one realization

from each of the models

xt = atxt−1 + εt where at = −0.5 + t/500 for t = 1, . . . , 500 and (7)

xt = atxt−1 + εt where at =

{
−0.5 for t ≤ 250

0.5 for t > 250,
(8)

where εt ∼ N(0, 1). In Figure 3, panel (a) shows a realization from model (7), and panel (b)

displays the coefficient at as a function of t. Panels (c) and (d) display analogous plots

corresponding to model (8). Panels (a) and (b) of Figure 4 show the posterior distributions

of the number of segments for models (7) and (8), respectively. Figure 5 shows in panel (a)

the estimated posterior distribution of the partition point, P̂ (ξ1,2 = t
∣∣ xxx), and in panel (b),

the estimated cumulative distribution function (cdf) of the partition point, P̂ (ξ1,2 < t
∣∣ xxx),

for model (7). Panels (c) and (d) show the analogous plots corresponding to model (8).

Figure 5 shows that when the time series changes slowly, so too does the probability that

the change occurs before time t, while when the time series changes abruptly, the cdf of

the partition point is a step function. The reason for this is that even though our model

is a piecewise model, conditional on the partition point, our technique can recover slowly
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Figure 3: Panels (a) and (b): plots of xt and at, respectively, corresponding to model (7); pan-
els (c) and (d): analogous plots corresponding to model (8).
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Figure 4: Panels (a) and (b): The estimated posterior distributions of the number of segments for
models (7) and (8), respectively.

varying time series by averaging over the possible locations of the partition point. When the

posterior probability of the partition point is concentrated on a few values, then the average

is taken over only those few values, while if the posterior probability of the partition point

has support across the entire time series, then the average is taken across all those values.
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Figure 5: Panels (a) and (b): Plots of P̂ (ξ1,2
∣∣ xxx) and P̂ (ξ1,2 < t

∣∣ xxx), respectively, corresponding
to model (7); panels (c) and (d): analogous plots corresponding to model (8).
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5 Simulation Study

To evaluate our methodology we consider various models and simulate 50 data sets from

each. To fit each data set, a total of 10,000 iterations are used with a burn-in period of 2000

iterations. For each data set, the number of basis functions is set to 10, and the maximum

number of segments is set to 4, except in Section 5.3, where it is set to 8. To judge the

quality of the estimated spectra, we compute the mean-squared error

MSE = {n(K + 1)}−1
n∑

t=1

K∑

k=0

{log f̂(t, νk)− log f(t, νk)}2,

where K is set to 50.

5.1 Stationary AR(3) Process

This section demonstrates that AdaptSPEC can be used even if the time series is stationary.

The stationary process used for this simulation is taken from Qin and Wang (2008) and is

given by

xt = 1.4256xt−1 − 0.7344xt−2 + 0.1296xt−3 + εt, (9)

where εt
iid∼ N(0, 1), t = 1, . . . , 256. Figure 6, panel (a), displays the theoretical time varying

Figure 6: Panel (a): True time varying log spectrum of model (9). Panels (b)–(d): estimated time
varying log spectra corresponding to the 10th, 50th and 90th percentiles of MSE, respectively.

log spectrum for model (9). Panels (b)–(d) are the estimated time varying log spectra corre-

sponding to the 10th, 50th and 90th percentiles of the MSE values. The median of the MSE
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values and their interquartile range are 0.06 and 0.04, respectively, which is indistinguish-

able from the results obtained using the DM estimator in Qin and Wang (2008). Their DM

estimator was chosen for comparison because it gave the minimum MSE for this simulation

setting. Although the median and IQR for the MSE values based on AdaptSPEC are very

close to those obtained in Qin and Wang (2008), the DM estimator produces more variable

estimates than those presented in this paper. We note that our comparable results were

achieved without the assumption of stationarity. In contrast, the results for this setting in

Qin and Wang (2008) assumed stationarity. The estimate P̂r(m = 1|xxx) can be considered

to be an estimate of the probability that the process is stationary. For this simulation, the

median of this estimated probability is equal to 0.99 while the first and third quartiles are

0.93 and 1.00, respectively. These results indicate that if the true process is stationary,

AdaptSPEC does not overfit by dividing the time series into more than one segment.

5.2 Comparison with Rosen et al. (2009)

In this section we compare the performance of AdaptSPEC, for tmin values of 20, 40 and 60,

with the method of Rosen et al. (2009), which will be referred to as RSW09 in what follows.

We simulate data from two processes used in Rosen et al. (2009), given by

xt = atxt−1 − 0.81xt−2 + εt, for t = 1, . . . , 1024, (10)

where at = 0.8(1− 0.5 cos(πt/1024)) and εt
iid∼ N(0, 1), and

xt =





0.9xt−1 + εt if 1 ≤ t ≤ 512
1.69xt−1 − 0.81xt−2 + εt if 513 ≤ t ≤ 768
1.32xt−1 − 0.81xt−2 + εt if 769 ≤ t ≤ 1024,

(11)

where εt
iid∼ N(0, 1). Models (10) and (11) represent a slowly varying and a piecewise autore-

gressive processes, respectively. Panel (a) of Figure 7 presents boxplots of the MSE values for

AdaptSPEC for tmin = 20, 40, 60 and for RSW09 corresponding to model (10). Panel (b) of

Figure 7 presents analogous boxplots corresponding to model (11). Figure 7 shows that the

estimates of the log spectra obtained using AdaptSPEC are superior to those obtained using

RSW09 for both the slowly varying AR(2) process as well as for the piecewise autoregressive

process. The value of tmin has no significant effect on the MSE values.
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Figure 7: Panel (a): Boxplots of the MSE values corresponding to model (10) based on AdaptSPEC
(for tmin = 20, 40, 60), and on RSW09. Panel (b): Analogous boxplots corresponding to model (11).

5.3 Frequentist Properties of the Partition Estimate

In this section we focus on the estimation of the partition, that is, the number and location

of the partition points. To this end, we use two piecewise autoregressive models, model (11)

above and the following model from Wood et al. (2011)

xt =





∑6
k=1 φk1xt−k + σ1ε

(1)
t for 1 ≤ t ≤ 200∑6

k=1 φk2xt−k + σ2ε
(2)
t for 201 ≤ t ≤ 1000∑6

k=1 φk3xt−k + σ3ε
(3)
t for 1001 ≤ t ≤ 1300∑6

k=1 φk4xt−k + σ4ε
(4)
t for 1301 ≤ t ≤ 1600∑6

k=1 φk5xt−k + σ5ε
(5)
t for 1601 ≤ t ≤ 2000,

(12)

with parameter values given in Table 1. A realization from model (12) is displayed in

Figure 8.

The simulation setting is as before except that in this section the maximum number of

segments is set to 8. Figure 9, panel (a) presents the estimated posterior probability of the

number of segments versus the number of segments for each of the 50 simulated samples from

model (11). Panel (b) presents the analogous plot for model (12). It is evident that most

of the 50 estimated posterior probabilities P̂r(m = 3|X) and P̂r(m = 5|X) under models

(11) and (12), respectivley, are greater than 0.9. Figure 10, panel (a) displays density
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Figure 8: A realization from model (12).

j φ1j φ2j φ3j φ4j φ5j φ6j σj
1 0.89 -0.85 0.25 -0.65 0.32 -0.33 0.04
2 0.70 -0.55 0.315 -0.63 0.11 -0.103 0.02
3 1.34 -1.37 0.895 -0.96 0.58 -0.42 0.07
4 0.98 -0.86 0.43 -0.61 0.20 -0.16 0.03
5 0.80 -0.68 0.25 -0.57 0.17 -0.27 0.02

Table 1: Parameter values for model (12).
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Figure 9: Panel (a): Posterior probability of the number of segments vs. the number of segments
for each of the 50 samples from model (11). Panel (b): Analogous plot corresponding to model (12).
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Figure 10: Panel (a): Density histograms of the posterior means of the partition points for a
model with 3 segments, based on each of the 50 samples from model (11). The dotted vertical lines
denote the true partition points. Panel (b): Analogous plot corresponding to model (12).

17



histograms of the estimated posterior means, Ê(ξj,3|X) for j = 1, 2, corresponding to model

(11). The dotted vertical lines are plotted at ξ1,3 = 512 and ξ2,3 = 768. Panel (b) displays

similar density histograms of Ê(ξj,5|X), j = 1, 2, 3, 4, corresponding to process (12), with

(ξ1,5, ξ2,5, ξ3,5, ξ4,5) = (200, 1000, 1300, 1600). Both panels show that our method correctly

identifies the locations of the breaks in the time series.

6 Applications

In this section we apply our method of estimating the time varying spectrum to two examples.

The first example is the intracranial EEG time series (IEEG) of an epileptic patient with

medicine resistant mesial temporal lobe epilepsy and the second is the El Niño Southern

Oscillation (ENSO) phenomenon.

6.1 IEEG

The analysis of IEEG time series in the period prior to the onset of an epileptic seizure, known

as the preictal period, has been an active area of research over the last decade (Mormann

et al., 2005). The motivation for this research has been to predict the onset of an epileptic

seizure by developing methods which can distinguish between the preictal period and the

interitcal period (the period between seizures) using IEEG time series. If this could be

achieved, the benefits to patients who suffer from epilepsy would be enormous. Advance

warning of an epileptic seizure would minimize injury and give sufferers a sense of control in

their management of the disease.

Most approaches to seizure prediction attempt to identify a preictal state by comparing

summary statistics from a univariate or multivariate IEEG time series at different user-

specified time intervals and classifying the time interval as either a preictal or interictal state

(Andrzejak et al., 2009). For example, Andrzejak et al. (2009) study a collection of bivariate

features of an IEEG time series for windows of lengths one and five minutes.

Other approaches by Aksenova et al. (2007) and Temuçin et al. (2005) discriminate between
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the preictal and interictal periods by monitoring changes in the spectral density of the IEEG

time series rather than specific characteristics of the time series or spectrum because spectral

instabilities might carry more information for seizure anticipation than increases or decreases

in a specific physical variable derived from EEG recordings (Aksenova et al., 2007). Aksenova

et al. (2007) assume that the IEEG time series is a locally stationary process with abrupt

changes (piecewise stationary) and compute an index which measures the degree of instability

of a process. If this index exceeds some individual specific predetermined threshold, they

conclude that the preictal period has begun.

Modeling the time varying spectrum of IEEG time series captures both the instability of the

spectrum across time as well as the difference in features of the spectrum at a given time.

Qin and Wang (2008) is an example of such an approach. Qin and Wang (2008) assume

that the IEEG time series is locally stationary and estimate the time varying spectrum non-

parametrically using smoothing spline ANOVA, as in Guo et al. (2003). To estimate the

smoothing parameters, Qin and Wang (2008) use generalized maximum likelihood and gen-

eralized approximate cross validation. They partition the data into 64 time blocks and select

32 equally spaced frequency points to compute the locally stationary periodograms. Guo

et al. (2003) note that one potential limitation of our approach is its smoothness assumption,

which cannot handle abrupt jumps in the time varying spectrum.

The data were collected by the EEG Lab of the University of Pennsylvania (D’Alessandro

et al., 2001) and are shown in Figure 11. The data consist of five-minute interval IEEG

time series from two channels taken at different times and were analyzed by Qin and Wang

(2008). The signal was sampled at the rate of 200 signals per second so that each time series

consists of 60,000 observations. Panels (a) and (c) of Figure 11 are the IEEG time series

taken from channels 1 and 2, respectively, during the preictal period which in this example

was taken to be five minutes prior to the onset of a known seizure. Panels (b) and (d) are

similar plots of five-minute intervals of the IEEG time series extracted at least four hours

prior to seizure onset and are therefore representative of the interictal period. Figure 12

shows the time varying spectra for the four time series. From figures 11 and 12 it can be

seen that the spectra of the IEEG series for the two channels during the interictal periods

are markedly different from the spectra during the preictal periods and different from each
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Figure 11: Plots of the IEEG time series. Panel (a) is the IEEG time series for a five-minute
time interval immediately prior to seizure onset for channel 1. Panel (c) is an analogous plot for
channel 2. Panel (b) is a plot of a five-minute interval of the IEEG time series extracted at least
four hours prior to seizure onset for channel 1, and panel (d) is an analogous plot for channel 2.
The dotted lines represent the partition points corresponding to the modal number of segments for
each time series.

Number of
Segments

Preictal Interictal

Channel 1 Channel 2 Channel 1 Channel 2
3 0.00 0.00 0.99 0.00
4 0.00 0.00 0.01 0.00
5 0.00 0.07 0.00 0.00
6 0.98 0.59 0.00 0.00
7 0.02 0.34 0.00 0.00
8 0.00 0.00 0.00 0.06
9 0.00 0.00 0.00 0.85
10 0.00 0.00 0.00 0.08
11 0.00 0.00 0.00 0.01

Table 2: Posterior probability of number of segments for two channels during the preictal period
and the interictal period
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Given the large number of observations in each time series, the maxiumum number of seg-

ments, M , was set at 12. Table 2 shows the posterior probability of the number of segments

for each of the time series, while Figure 11 also shows the partition points (dotted lines) cor-

responding to the modal number of segments for each series. For both channels, the modal

number of segments for the preictal period is 6.

The spectra for the initial locally stationary segment, (t < 100 secs), of the preictal period

for both channels display characteristics typical of pre-seizure spectra documented in the

literature. There is an increase in power at a frequency of 60 Hz and again at 85Hz. This

is consistent with the findings of Niederhauser et al. (2003) who found that the frequency

components in the range 25-60Hz appear before a seizure, and with Rampp and Stefan (2006)

who found that there is a specific association of high-frequency oscillations (in the range 80 -

500 Hz) with an epileptic network function. The estimated spectra during this first segment

are different from those estimated by Qin and Wang (2008) during a similar period. Our

estimate exhibits very pronounced fluctuations in power at high frequency for both channels,

while the estimate of Qin and Wang (2008) shows only slight fluctuations in power for channel

1 and no fluctuations in power for channel 2. This may be because the method of Qin and

Wang (2008) oversmooths and therefore cannot capture these fluctuations.

The spectra for the segment 100 < t < 150 secs, of the preictal period in both channels,

(Figure 12, panels (a) and (c)), are distinguished from the spectra for the first segment

by an increase in power at low frequencies (in the range 10-50 Hz). This is consistent

with the findings of Qin and Wang (2008), although Qin and Wang (2008) refer to this

increase in power at low frequencies as a power build-up and the plots of their time varying

spectra indicate that this power build-up is gradual. In contrast, our method suggests that

this increase occurs abruptly. From visual inspection of the time series, it appears that

the change in the time series is abrupt rather than gradual, so that the gradual increase

estimated in Qin and Wang (2008) may be due to oversmoothing.

The duration of this power surge at low frequencies during the preictal period is approxi-

mately twenty seconds for channel 1 and seven seconds for channel 2. Following this surge,

the spectra for t > 150 secs, of the preictal period for both channels revert back to the
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spectra of the initial locally stationary segment. Afterwards, there is a brief power surge at

very low frequencies (< 10Hz) and high frequencies (>70 Hz) which occurs approximately

12 seconds before seizure onset. However, this second surge lasts for only one second.

The spectrum for the interictal period in channel 1, (Figure 12, panel (b)), does not have the

fluctuations in power at high frequencies which characterize the spectra of the preictal period

for both channels, and while the spectrum of channel 2, (Figure 12, panel (d)), shows slight

fluctuations, these are not as pronounced as those for the preictal period. The spectrum for

channel 1 only has one power surge which lasts for less than half a second before returning

to its previous state. In contrast, the spectrum for channel 2 experiences a few small power

surges between 4 to 2 minutes prior to the end of the time series. However, the power surges

for the interictal periods occur at high frequencies, while those for preictal periods occur at

low frequencies.

In summary, the spectra of the preictal period differ from those of the interictal period in

three ways. First, spectra of the preictal period exhibit pronounced fluctuations in power

at high frequencies, while spectra of the interictal period do not. Second, the spectra of the

preictal period have large power surges at low frequencies while the spectra of the interictal

period have smaller power surges at high frequency. Third, the duration of the power surges

during the preictal period are longer than those during the interical period. The large number

and short duration of locally stationary segments found in the interictal period is consistent

with the findings in Kaplan et al. (2005).

6.2 ENSO

The National Oceanic and Atmospheric Administration (NAOO) defines the El Niño South-

ern Oscillation (ENSO) as a disruption of the ocean-atmosphere system in the Tropical

Pacific having important consequences for weather and climate around the globe. In recent

years there has been much research and debate on changes in the structure of ENSO. Many

researchers have reported changes in the frequency of ENSO (Trenberth and Hoar, 1996,

1997; An and Wang, 2000) and the intensity of ENSO (Timmermann et al., 2004). The

NOAA states on its website (http://www.ncdc.noaa.gov/oa/climate/globalwarming.html)
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Figure 12: Plots of the time varying spectrum of the IEEG time series. Panel (a) is the time
varying spectrum for the IEEG time series for a 5-minute time interval immediately prior to seizure
onset for channel 1. Panel (c) is an analogous plot for channel 2. Panel (b) is a plot of the time
varying spectrum for the IEEG time series for a 5-minute interval extracted at least 4 hours prior
to seizure onset for channel 1 and panel (d) is an analogous plot for channel 2.
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Number of
Segments SOI Niño3.4 DSLPA

1 0.95 0.93 0.99
2 0.05 0.07 0.01
3 0.00 0.00 0.00

Table 3: Posterior probability of number of segments for the three indices, the SOI, Niño3.4 and
DSLPA.

that it is also true that El Niños have been more frequent and intense in recent decades.

However, recent work by Solow (2006), Nicholls (2008) and Rosen et al. (2009) suggests

that the frequency and intensity of ENSO have not changed over the last century. In

this section we analyze the structure of ENSO by modeling the time varying spectrum

of three indicators of ENSO. The first indicator is the Southern Oscillation Index (SOI).

The SOI is the monthly standardized anomaly of the mean sea-level pressure difference be-

tween Tahiti and Darwin and is available from the Australian Bureau of Meteorology at

http://www.bom.gov.au/climate/current/soihtm1.shtml. Reliable measurements of this in-

dex are available from 1876 to the present, and so we use the entire dataset in this example.

The second indicator of ENSO is the Niño3.4 index which is the sea surface temperature

(SST) averaged across the region 5S-5N, 120W-170W. From 1880–1950 the SST used to

construct the Niño3.4 index was measured by buoys or passing ships but from 1950 onwards

satellite measurements of the SST were used instead. There are many different versions of

the Niño3.4 index, however, the differences among versions are very small after 1950. For this

reason, we confine our analysis to this time period and use the Hadley Center SST dataset

HadSST1. The third index is the mean sea level pressure at Darwin anomalies (DSLPA) from

1951 to 2010, available from the NOAA at http://www.cpc.ncep.noaa.gov/data/indices/darwin.

This indicator was chosen solely because it is the indicator used by Trenberth and Hoar

(1996), and we note that the SOI and Niño3.4 have been considered to be better indicators

of ENSO than the DSLPA for some time (Chen, 1982). Plots of the three indices appear in

Figure 13.

We set the maximum number of segments to be 4 for the three series and ran the sampling
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Figure 13: Plots of the SOI index from 1876–2011, panel (a), the Niño3.4 index from 1950-2011,
panel (b) and the DSLPA from 1951–2010, panel (c).

scheme 6000 iterations with a burn-in of 2000 iterations. The posterior probability of the

number of segments appears in Table 3. The time varying spectra of all three indices appear

in Figure 14. Our results indicate that the spectra of the three indices are very similar and

that they do not vary over time. Therefore it is very unlikely that there has been a change

in the frequency or intensity of ENSO. The estimated posterior probabilities that the time

series are stationary, i.e., P̂r(m = 1|xxx) are 0.95, 0.93 and 0.99 for the SOI, Niño3.4 and

DSLPA indices, respectively. These results confirm the findings of Rosen et al. (2009), Solow

(2006) and Nicholls (2008).

One explanation for the difference between these findings and the earlier study of Trenberth

and Hoar (1996) is that Trenberth and Hoar (1996) tested explicitly if there had been a

change in frequency from 1981 onwards. In our model, explicitly testing for a change in

frequency in the SOI or the Niño3.4 index from a specific time, t∗, is equivalent to assuming

a priori that Pr(ξ12 = t∗
∣∣ m = 2, xxx) = 1. This is a very strong prior belief, in effect the

uncertainty surrounding the number of segments and the partition was ignored by Trenberth

and Hoar (1996). In contrast, our methodology makes no assumptions regarding the number

of segments or the partition. For a full discussion of why our results differ from those of

Trenberth and Hoar (1996), see the discussion in Rosen et al. (2009). Given the results in

this paper, in Rosen et al. (2009), Solow (2006) and Nicholls (2008), we suggest the NOAA

update their website to reflect recent research findings.
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Figure 14: Time varying log spectrum of the SOI index from 1876–2011, panel (a), the Niño3.4
index from 1950-2011, panel (b) and the DSLPA from 1951–2010, panel (c).
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Appendix: Details of the Sampling Scheme

As described in the paper, a partition of the time series into m segments is denoted by

ξξξm = (ξ0,m, . . . , ξm,m). Also, let τττ 2m = (τ 21,m, . . . , τ
2
m,m)′ and βββm = (βββ′1,m, . . . , βββ

′
m,m)′ where

βββj,m is a vector of unknown coefficients for the jth segment in a partition of m segments, for

j = 1, . . . ,m. To simplify the notation, we assume that βββj,m, j = 1, . . . ,m, includes α0j,m as

its first entry (see equation (3)). In what follows, current and proposed values are denoted

by the superscripts c and p, respectively.
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1. Between-Model Moves:

Let θθθm = (ξξξ′m, τττ
2′
m, βββ

′
m)′ and suppose the chain is currently at (mc, θθθcmc). We propose to

move to (mp, θθθpmp) by drawing (mp, θθθpmp) from a proposal density q(mp, θθθpmp

∣∣ mc, θθθcmc)

and accepting this draw with probability

α = min

{
1,
p(mp, θθθpmp |xxx)× q(mc, θθθcmc

∣∣ mp, θθθpmp)

p(mc, θθθcmc|xxx)× q(mp, θθθpmp

∣∣ mc, θθθcmc)

}
,

where p(·) denotes a target density, which is the product of an approximate likelihood

times prior densities. The specific forms of the target and proposal densities depend on

the move type and are detailed below. We first outline the proposal density q(mp, θθθpmp

∣∣

mc, θθθcmc).

q(mp, θθθpmp

∣∣ mc, θθθcmc) = q(mp
∣∣ mc)× q(θθθpmp

∣∣ mp,mc, θθθcmc)

= q(mp
∣∣ mc)× q(ξξξpmp , τττ

2p
mp , βββ

p
mp

∣∣ mp,mc, θθθcmc)

= q(mp
∣∣ mc)× q(ξξξpmp

∣∣ mp,mc, θθθcmc)× q(τττ 2pmp

∣∣ ξξξpmp ,mp,mc, θθθcmc)

× q(βββpmp

∣∣ τττ 2pmp , ξξξ
p
mp ,mp,mc, θθθcmc).

Thus, (mp, θθθpmp) is drawn by first drawing mp, followed by ξξξpmp , τττ 2pmp and finally βββpmp .

Details on how each of these quantities is sampled are provided next.

(a) The number of segments, mp, is proposed from q(mp|mc). LetM be the maximum

number of segments allowed, and mc
2min be the current number of segments which

contain at least 2 tmin observations, then

q(mp = k
∣∣ mc) =





1/2 if k = mc − 1,mc + 1 and mc 6= 1,M, mc
2min 6= 0

1 if k = mc − 1 and mc = M or mc
2min = 0

1 if k = mc + 1 and mc = 1

(b) Conditional on mp, a new partition, ξξξpmp , a new vector of smoothing parameters,

τττ 2pmp , and a new vector of coefficients, βββpmp , are then proposed as follows.

i. Birth:

Suppose mp = mc + 1, then

A. A partition,

ξξξpmp = (ξc0,mc , . . . , ξck∗−1,mc , ξ
p
k∗,mp , ξ

c
k∗,mc , . . . , ξcmc,mc)
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is proposed from q(ξξξpmp

∣∣ mp,mc, θθθcmc). This partition is proposed by first

selecting at random a segment j = k∗ to split. A point t∗ within segment

j = k∗ is then selected to be the proposed partition point, subject to

the constraint that ξck∗−1,mc + tmin ≤ t∗ ≤ ξck∗,mc − tmin. The proposal

probability function is

q(ξpj,mp = t∗
∣∣ mp,mc, ξξξcmc) = p(j = k∗

∣∣ mp,mc, ξξξcmc)

× p(ξpk∗,mp = t∗
∣∣ j = k∗,mp,mc, ξξξcmc)

=
1

mc
2min

× 1

nk∗,mc − 2tmin + 1
.

B. A vector of smoothing parameters

τ 2pmp = (τ 2c1,mc , . . . , τ 2ck∗−1,mc , τ
2p
k∗,mp , τ

2p
k∗+1,mp , τ

2c
k∗+1,mc , . . . , τ 2cmc,mc)

is proposed from q(τττ 2pmp

∣∣ mp, ξξξpmp ,mc, θθθcmc) = q(τττ 2pmp

∣∣ mp, τττ 2cmc). We fol-

low Green (1995) and propose the additional smoothing parameters for

the newly split segment, τ 2pk∗,mp and τ 2pk∗+1,mp , by drawing u ∼ U [0, 1]

and letting τ 2pk∗,mp and τ 2pk∗+1,mp be deterministic functions of u and τ 2ck∗,mc .

Specifically,

τ 2pk∗,mp = τ 2ck∗,mc × u

1− u
τ 2pk∗+1,mp = τ 2ck∗,mc × 1− u

u
.

C. A vector of coefficients

βββpmp = (βββc′1,mc , . . . , βββc′k∗−1,mc , βββ
p′
k∗,mp , βββ

p′
k∗+1,mp , βββ

c′
k∗+1,mc . . . , βββc′mc,mc)′

is proposed from q(βββpmp

∣∣ τττ 2pmp , ξξξ
p
mp ,mp,mc, θθθcmc) = q(βββpmp

∣∣ τττ 2pmp , ξξξ
p
mp ,mp).

The pair of vectors βββpk∗,mp and βββpk∗+1,mp are drawn from normal approxima-

tions to their posterior conditional distributions p(βββpk∗,mp

∣∣ xxxpk∗ , τ 2pk∗,mp ,mp)

and p(βββpk∗+1,mp

∣∣ xxxpk∗+1, τ
2p
k∗+1,mp ,mp), where xxxpk∗ and xxxpk∗+1denote the sub-

sets of the time series belonging to segment k∗ and k∗+1 respectively, see

equation (3). Note that ξξξpmp determines xxxp∗ = (xxxp′k∗ , xxx
p′
k∗+1)

′, and so ξξξpmp has
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been suppressed here. For example, βββpk∗,mp is drawn from N(βββmax
k∗ ,Σmax

k∗ ),

where βββmax
k∗ = arg max

βββp

k∗,mp

p(βββpk∗,mp

∣∣ xxxpk∗ , τ 2pk∗,mp ,mp) and

Σmax
k∗ =

{
−
∂2 log p(βββpk∗,mp

∣∣ xxxpk∗ , τ 2pk∗,mp ,mp)

∂βββpk∗,mp∂βββ
p′
k∗,mp

∣∣∣
βββp

k∗,mp=βββ
max

k∗

}−1
.

The acceptance probability for the birth move is α = min{1, A}, where

A =
p(θθθpmp

∣∣ xxx,mp)p(θθθpmp

∣∣ mp)p(mp)

p(θθθcmc

∣∣ xxx,mc)p(θθθcmc

∣∣ mc)p(mc)

× p(mc
∣∣ mp)p(βββck∗,mc)

p(mp
∣∣ mc)p(ξm

p

k∗,mp

∣∣ mp,mc)p(u)p(βββpk∗,mp)p(βββpk∗+1,mp)
×
∣∣∣∣∣
∂(τ 2pk∗,mp , τ

2p
k∗+1,mp)

∂(τ 2ck∗,mc , u)

∣∣∣∣∣ ,

where p(u) = 1, 0 ≤ u ≤ 1, p(βββpk∗,mp) and p(βββpk∗+1,mp) are the Gaussian

proposal densities N(βββmax
k∗ ,Σmax

k∗ ) and N(βββmax
k∗+1,Σ

max
k∗+1), respectively, and the

Jacobian is
∣∣∣∣∣
∂(τ 2pk∗,mp , τ

2p
k∗+1,mp)

∂(τ 2ck∗,mc , u)

∣∣∣∣∣ =
2τ 2ck∗,mc

u(1− u)
= 2(τ pk∗,mp + τ pk∗+1,mp)2.

ii. Death:

If mp = mc − 1, then the reverse of a birth move is performed.

A. A partition

ξξξpmp = (ξc0,mc , . . . , ξck∗−1,mc , ξck∗+1,mc , . . . , ξcmc,mc)

is proposed by selecting one of mc − 1 partition points to remove. Let

j = k∗ be the partition point selected for removal. Among mc segments

there are mc − 1 partition points available for removal. Our proposal is

to make each partition point equally likely so that

q(ξpj,mp

∣∣ mp,mc, ξξξcmc) =
1

mc − 1
.

B. A vector of smoothing parameters,

τττ 2pmp = (τ 2c1,mc , . . . , τ 2ck∗−1,mc , τ
2p
k∗,mp , τ

2c
k∗+2,mc , . . . , τ 2cmc,mc)
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is proposed from q(τττ 2pmp

∣∣ mp, ξξξpmp ,mc, θθθcmc) = q(τττ 2pmp

∣∣ mp, τττ 2cmc). A sin-

gle smoothing parameter, τ 2pk∗,mp , is formed from τ 2ck∗,mc and τ 2ck∗+1,mc by

reversing the process described in step (b) i B, i.e.,

τ 2pk∗,mp =
√
τ 2ck∗,mcτ 2ck∗+1,mc .

C. A vector of coefficients

βββpmp = (βββc′1,mc , . . . , βββc′k∗−1,mc , βββ
p′
k∗,mp , βββ

c′
k∗+2,mc , . . . , βββc′mc,mc)′

is proposed from q(βββpmp

∣∣ τττ 2pmp , ξξξ
p
mp ,mp,mc, θcmc) = q(βββpmp

∣∣ τττ 2pmp , ξξξ
p
mp ,mp).

A single vector of coefficients, βββpk∗,mp , is drawn from a normal approxi-

mation to its posterior distribution, p(βββpk∗,mp

∣∣ xxx, τ 2pk∗,mp , ξξξ
p
mp ,mp), as in

step (b) i C.

The acceptance probability is the inverse of that of the birth move. If the

move is accepted then mc = mp and θθθcmc = θθθpmp .

2. Within-Model Moves:

For this type of move, m is fixed, and so the notation indicating the dependence on

the number of segments is dropped. Within-model moves consist of two parts; first,

a segment relocation move is performed, and then, conditional on the relocation, all

the basis function coefficients are updated. The two steps, jointly, are either accepted

or rejected via a M-H step. The smoothing parameters are then updated via a Gibbs

step.

(a) Suppose the chain is at θθθc = (ξξξc, βββc); we propose to move to θθθp = (ξξξp, βββp) as

follows.

i. Select a partition point, ξk∗ , to relocate from m− 1 possible partition points.

Then select a position in the interval [ξk∗−1, ξk∗+1], subject to the constraint

that the new location is at least tmin from each of ξk∗−1 and ξk∗+1, so that

Pr(ξpk∗ = t) = Pr(j = k∗)× Pr(ξpk∗ = t
∣∣ j = k∗), (A.1)

where Pr(j = k∗) = (m− 1)−1.
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In order to explore the parameter space efficiently, we construct a mixture

distribution for Pr(ξpk∗ = t
∣∣ j = k∗), so that

Pr(ξpk∗ = t
∣∣ j = k∗) = π q1(ξ

p
k∗ = t

∣∣ ξck∗) + (1− π) q2(ξ
p
k∗ = t

∣∣ ξck∗), (A.2)

where q1(ξpk∗ = t
∣∣ ξck∗) = (nk∗ + nk∗+1 − 2tmin + 1)−1, ξk∗−1 + tmin ≤ t ≤

ξk∗+1 − tmin, and

q2(ξ
p
k∗ = t

∣∣ ξck∗) =





0 if |t− ξck∗| > 1
1/3 if |t− ξck∗| ≤ 1, nk∗ 6= tmin and nk∗+1 6= tmin

1/2 if t− ξck∗ ≤ 1, nk∗ = tmin and nk∗+1 6= tmin

1/2 if ξck∗ − t ≤ 1, nk∗ 6= tmin and nk∗+1 = tmin

1 if t = ξck∗ , nk∗ = tmin and nk∗+1 = tmin.

As can be seen, the support of q1 has nk∗ + nk∗+1 − 2tmin + 1 time points,

while that of q2 has at most three. Using q2 alone results in a relatively high

acceptance rate of the M-H step but explores the parameter space too slowly.

Adding the q1 component allows bigger jumps which in turn leads to faster

exploration of the parameter space. Fixing π at a relatively small value, say

0.2, combines a relatively high acceptance rate with fast exploration of the

parameter space.

ii. Draw βββpj , j = k∗, k∗ + 1, from an approximation to
∏k∗+1

j=k∗ p(βββj
∣∣ xxxpj , τ 2j ), as in

step 1 (b) (i) C.

The proposal density, evaluated at βββpj , j = k∗, k∗ + 1, is

q(βββp∗
∣∣ xxxp∗, τττ 2∗) =

k∗+1∏

j=k∗

q(βββpj
∣∣ xxxpj , τ 2j ),

where βββp∗ = (βββp′k∗ , βββ
p′
k∗+1)

′ and τττ 2∗ = (τ 2k∗ , τ
2
k∗+1)

′. In a similar fashion, the

proposal density is evaluated at the current values of βββc∗ = (βββc′k∗ , βββ
c′
k∗+1)

′ . The

draw βββp∗ is accepted with probability

α = min

{
1,
p(xxxp∗

∣∣ βββp∗)p(βββp∗
∣∣ τττ 2∗)q(βββc∗

∣∣ xxxc∗, τττ 2∗)
p(xxxc∗

∣∣ βββc∗)p(βββc∗
∣∣ τττ 2∗)q(βββp∗

∣∣ xxxp∗, τττ 2∗)

}
,

where xxxc∗ = (xxxc′k∗ , xxx
c′
k∗+1)

′. If the draw is accepted, then (ξck∗ , βββ
c
∗) = (ξpk∗ , βββ

p
∗).

(b) Draw τττ 2p from

p(τττ 2∗
∣∣ βββ∗) =

k∗+1∏

j=k∗

p(τ 2j
∣∣ βββj)
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and accept with probability 1. Equation (4) gives the density of p(τ 2
∣∣ βββ) without

the proportionality constant.
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