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Abstract

We present the AdaptSPEC-X method for the joint analysis of a panel of possibly

nonstationary time series. The approach is Bayesian and uses a covariate-dependent

infinite mixture model to incorporate multiple time series, with mixture components

parameterized by a time-varying mean and log spectrum. The mixture components are

based on AdaptSPEC, a nonparametric model which adaptively divides the time series

into an unknown number of segments and estimates the local log spectra by smoothing

splines.

AdaptSPEC-X extends AdaptSPEC in three ways. First, through the infinite mix-

ture, it applies to multiple time series linked by covariates. Second, it can handle

missing values, a common feature of time series which can cause difficulties for non-

parametric spectral methods. Third, it allows for a time-varying mean. Through

these extensions, AdaptSPEC-X can estimate time-varying means and spectra at ob-

served and unobserved covariate values, allowing for predictive inference. Estimation
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is performed by Markov chain Monte Carlo (MCMC) methods, combining data aug-

mentation, reversible jump, and Riemann manifold Hamiltonian Monte Carlo tech-

niques. We evaluate the methodology using simulated data, and describe applications

to Australian rainfall data and measles incidence in the US. Software implementing

the method proposed in this paper is available in the R package BayesSpec.

Key words: Locally stationary time series; Measles; Multiple time series;

Rainfall; Reversible jump Markov chain Monte Carlo; Whittle likelihood;

1 Introduction

When the available data are multiple time series thought to be realizations of nonstationary random

processes, estimation of their time-varying mean and spectrum offers insight into the behavior of

the processes, including whether and how they have changed over time. For example, an analysis

of the spatial distribution of the frequency domain characteristics of time series of rainfall for sites

spanning a wide spatial field can quantify the cyclical variability of the underlying process, while

allowing for nonstationarity can suggest ways in which the climate has changed over the observation

period.

Joint modeling of multiple time series with similar or identical local spectra improves estimation

of the spectra by borrowing strength, and this is the motivation behind the approach taken in this

article. This is particularly necessary when the time series are nonstationary and the data are

historical, because the prospect of the spectrum changing implies that future observations may not

help to estimate the local spectrum in earlier time periods (Priestley, 1965; Dahlhaus, 1997). This

is reflected, for example, in theoretical frameworks for estimating evolutionary spectra, such as

those of Priestley (1965), Dahlhaus (1997) and Dahlhaus (2012). In those frameworks, the relevant

asymptotics are based on infill, requiring new observations of the process at finer time intervals;

such infill is not possible for historical time series. Joint modeling of multiple time series with

similar or identical local spectra is one way to ameliorate this problem, as estimates for different

time series can borrow strength from each other (the same approach is also useful for stationary

time series; see, e.g., Diggle and al Wasel, 1997). If additional information is available, such as

covariates, it should be incorporated into the model to improve estimation.
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This article addresses this problem by presenting methodology for analyzing a panel of pos-

sibly nonstationary time series using a covariate-dependent infinite mixture model, with mixture

components parameterized by their time-varying mean and spectrum. The mixture components

are based on AdaptSPEC (Rosen et al., 2012, henceforth RWS12), which partitions a (centered)

time series into an unknown but finite number of segments, estimating the spectral density within

each segment by smoothing splines. As part of the proposed method, AdaptSPEC is extended to

handle missing values, a common feature of time series which can cause difficulties for nonpara-

metric spectral methods. A second extension is the incorporation of a time-varying mean, which

avoids having to de-mean (center) the time series as a preliminary step. The covariates, which are

assumed to be time-independent, are incorporated via the mixture using the logistic stick breaking

process (LSBP) of Rigon and Durante (2021), where the log odds for each ‘stick break’ are mod-

eled using a thin plate spline Gaussian process over the covariates. The model is formulated in a

Bayesian framework, where Markov chain Monte Carlo (MCMC) methods are used for parameter

estimation and to deal with missing values. Specifically, as in AdaptSPEC, reversible jump MCMC

(RJMCMC) is used to estimate the mixture component parameters, while the LSBP parameters

are estimated via the Pólya-Gamma based latent variable expansion of Rigon and Durante (2021)

(see also Polson et al., 2013, for the original latent variable expansion in the finite mixture case).

The model and sampling scheme are capable of handling large panels, such as that of the measles

application which has nearly 200,000 observations. In addition to estimating time-varying spectra

for each time series in the panel, the covariate-dependent mixture structure allows inference about

the underlying process at unobserved covariate values, enabling predictive inference. For instance,

in this work, we use longitude and latitude as covariates when modeling Australian rainfall data,

and are able to infer the predictive time-varying spectrum of the rainfall process at unobserved

locations.

Many methods have been proposed for the spectral analysis of time series. As the focus of

this paper is multiple time series, we provide background in the form of an overview of methods

for nonstationary single time series. We then review methods for multiple time series, stationary

or otherwise. This excludes methods for multivariate time series, and we refer readers to Li and

Krafty (2019) for a review of past and recent work in this active research area.

Approaches to spectral estimation for a single nonstationary time series include fitting para-
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metric time series models with time-varying parameters (Kitagawa and Gersch, 1996; Dahlhaus,

1997; West et al., 1999; Yang et al., 2016), smoothing the log periodogram (Ombao et al., 2001;

Guo et al., 2003; Qin and Wang, 2008), dividing the time series into locally stationary segments

(Adak, 1998; Davis et al., 2006; Rosen et al., 2009, 2012), using short time Fourier transforms

(Yang and Zhou, 2020), and through the use of wavelets (Nason et al., 2000). For a recent and

extensive overview of methods for single nonstationary time series, see Yang et al. (2016). Most

directly relevant to this paper, Rosen et al. (2009) estimate the log of the spectral density using a

Bayesian mixture of splines. The time series is partitioned into small sections, and it is assumed

that the log spectral density within each partition is given by a mixture of smoothing splines. The

mixture weights are assumed to be time-varying. RWS12 introduce the AdaptSPEC method, which

avoids the fixed partitions of Rosen et al. (2009). AdaptSPEC partitions the time series into one

or more variable length segments in an adaptive manner, modeling the log spectral density within

each segment via a smoothing spline. This results in better estimates than those obtained from

the method of Rosen et al. (2009). Furthermore, by averaging over the possible locations of the

partition points, the method can accommodate both slowly and abruptly varying processes, as well

as identify stationary processes. AdaptSPEC forms the basis of our proposed model for multiple

time series.

For multiple stationary time series, the seminal work of Diggle and al Wasel (1997) establishes

a frequentist framework for replicated stationary time series in which the log spectral density for

each replicate varies randomly around a baseline population density. The variation is captured

through a mixed-effects model as arising from both random and deterministic (i.e., covariate-

dependent) causes, and is estimated through a probability model over the log periodograms of the

replicates. Freyermuth et al. (2010) extend this method using tree-structured wavelets to improve

the estimation of both the population and the replicate log spectra (see also Chau and von Sachs,

2016, for wavelet estimation for spectra of replicated time series). Krafty et al. (2011) construct

a covariate-dependent model for multiple stationary time series in which the log spectrum has a

mixed effects representation, where the effects are functions over the frequency domain.

Iannaccone and Coles (2001) describe a Bayesian extension of the work of Diggle and al Wasel

(1997), in which the population spectral density is modeled using a nonparametric structure as in

Carter and Kohn (1997), and MCMC is used for estimation. Macaro and Prado (2014) propose
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a Bayesian model for multiple stationary time series with a covariate-dependent spectral density

composed as a sum of spectral densities corresponding to different levels of two or more factors

and, following Choudhuri et al. (2004), model the spectral density associated with these factors via

Bernstein-Dirichlet priors. Krafty et al. (2017) present a Bayesian model for stationary multivariate

time series based on the work of Rosen and Stoffer (2007), where multiple (multivariate) time series

from different subjects are available, and subjects have an associated single covariate. Cadonna

et al. (2019) model multiple stationary time series using a Bayesian hierarchical model. The log-

periodogram of a single stationary time series is modeled as a mixture of Gaussian distributions

where the mixture weights and mean functions are frequency-dependent. The hierarchical model

for multiple time series is constructed by setting the mean functions to be common to all time series

while letting the weights vary between time series.

For multiple nonstationary time series, Qin et al. (2009, hereafter referred to as QGL09) present

a frequentist method for estimating the covariate-dependent time-varying spectral density of a

collection of time series with covariates. The covariates are allowed to vary with time, and the

local log spectral density at each time within each series is a linear combination of time-frequency

surfaces, where the coefficients on the combination are the covariates. This has similarities to the

approach for stationary time series used by Diggle and al Wasel (1997), but random variation in

the replicates is not accounted for. Estimation is performed in two stages. First, the time period

of the study is split into blocks, and the local log periodogram is calculated within each block and

for each replicate. The covariate-dependent time-varying spectral density is then estimated using

an approximate functional model over the local log periodograms. Also frequentist, Fiecas and

Ombao (2016) perform spectral estimation for replicated nonstationary multivariate time series,

where the spectrum changes slowly between replications. The application is to multiple time series

collected from the same subject over time. The estimation technique, which has similarities to that

of QGL09, first splits the time series into blocks and computes local periodogram matrices, and

then smooths over the blocks to estimate the spectrum. Bruce et al. (2018) present a method for

multiple nonstationary time series with a single covariate that is referred to as conditional adaptive

Bayesian spectrum analysis (CABS), which adaptively partitions both time- and covariate-space,

modeling the spectrum within each partition by smoothing splines (as in RWS12).

Augmenting this literature, we present methodology, referred to as AdaptSPEC-X, which com-
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bines four features: multiple time series, nonstationarity in both mean and spectrum, multiple

covariates, and missing data. We demonstrate the method on simulated data, and show how it can

be used to estimate the mean and spectra in two application areas: Australian rainfall data, and

measles incidence in the United States. Software implementing AdaptSPEC-X is available in the

R package BayesSpec.1

The AdaptSPEC-X methodology constitutes an advance of the existing state-of-the-art in sev-

eral respects. A near-universal feature in the literature on spectral estimation is to assume the mean

is known or fixed over time (see, e.g., Diggle and al Wasel, 1997), whereas AdaptSPEC-X allows

for the mean to be unknown and to change over time. A fixed-mean assumption is appropriate in

many settings, but not universally so. In particular, the assumption would be inappropriate in the

applications presented in the paper. In many cases, particularly those with highly variable short

time series, there may also be considerable uncertainty regarding the mean, so assuming it is known

would lead to overconfident and potentially different inference about other aspects of the time se-

ries. Another advance is AdaptSPEC-X’s treatment of missing values, which are accommodated

via the MCMC scheme; while most parametric models have little trouble with missing data, they

are typically not handled by nonparametric spectral methods. These first two advances are in fact

extensions of AdaptSPEC (RWS12), and are not unique to the setting of multiple nonstationary

time series.

In the setting of multiple nonstationary time series, AdaptSPEC-X shares characteristics with

the CABS method of Bruce et al. (2018), in that both are Bayesian, both take as their starting

point a piecewise-stationary model with a nonparametric model for the log spectrum within each

segment, and both can accommodate either slowly- or abruptly-varying time series. AdaptSPEC-X

differs from CABS in that it can also handle multiple covariates, a time-varying mean, and missing

values. The other comparable method to AdaptSPEC-X is that of QGL09, which also allows for

multiple covariates. Instead of adaptively partitioning time, as does AdaptSPEC-X to cater for

both abrupt changes and (through model averaging) smooth changes to the spectrum, QGL09

preprocess the time series into blocks that are assumed stationary, thus ignoring the uncertainty

associated with the partition of the time series. A similar approach to this is used by Qin and

1Available from GitHub at https://github.com/mbertolacci/BayesSpec/. As of publication, the ver-
sion of the package on CRAN does not contain AdaptSPEC-X.

6

https://github.com/mbertolacci/BayesSpec/


Wang (2008) for univariate time series. RWS12 contrast the adaptive partitioning approach with

the block-based approach of Qin and Wang (2008), and conclude that AdaptSPEC yielded better

estimates of the spectrum. One feature of the method of QGL09 that AdaptSPEC-X lacks is the

ability to accommodate time-varying covariates; the converse is true for the ability to handle time-

varying means and missing values. A further difference is that AdaptSPEC-X is fully Bayesian,

and, through its use of thin-plate splines, incorporates covariates in a more general fashion than

that provided by the additive model used by QGL09.

The paper proceeds as follows. Section 2 describes AdaptSPEC, the model for single non-

stationary time series forming the basis for the analysis of multiple nonstationary time series.

AdaptSPEC-X, a covariate-dependent infinite mixture model, is presented in Section 3. Section 4

outlines the MCMC scheme used to estimate the model parameters. Section 5 presents simula-

tion studies that examine the performance of the method. Section 6 describes the application

areas. Australian rainfall is analyzed in Section 6.1, and measles incidence in the US is discussed

in Section 6.2. The article is accompanied by a set of Appendices in the supplementary material.

Appendix A provides details of the conditional distributions necessary for the sampling scheme,

and Appendix B expands on the covariance structure used to derive the conditional distribution of

the missing values.

2 Model for single time series

RWS12 present the AdaptSPEC method for modeling single nonstationary time series which we

summarize in this section. Let x = (x1, . . . , xn)′ be a time series of length n. Assume for ease

of notation that n is even, and suppose initially that x is a realization from a stationary process

{Xt} with constant mean µ and a bounded positive spectral density f(ω) for ω ∈ (−1
2 ,

1
2 ]. Whittle

(1957) shows that, for large n, the likelihood of x can be approximated as

p(x | µ, f) =
1

(2π)n/2
1∏n

k=1 f(ωk)1/2
exp

{
−1

2

n∑
k=1

Ik
f(ωk)

}
, (1)

where ωk = k−1
n for k = 1, . . . , n are the Fourier frequencies, Ik = |dk|2 is the periodogram at ωk,
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and

dk =
1√
n

n∑
t=1

(xt − µ)e−2πiωk(t−1) (2)

is the discrete Fourier transform (DFT) at ωk, with i =
√
−1. RWS12 follow Wahba (1990) by

expressing log f as

log f(ω) = α0 + h(ω), (3)

and placing a smoothing spline prior on h(ω). Due to the evenness of f(ω) and the periodogram,

h(ω) is modeled on the domain ω ∈ [0, 0.5], corresponding to the first n
2 + 1 Fourier frequencies.

This prior is expressed via a linear combination of J basis functions, where J < n
2 + 1 is chosen

to balance prior flexibility and computational resources. See Appendix A.1 in the supplementary

material and RWS12 for details.

Next we allow the underlying process {Xt} to be nonstationary. Let a time series consist of a

number of segments, m, and let ξs,m be the end of the sth segment, s = 1, . . . ,m, where ξ0,m = 0

and ξm,m = n. Then we assume that {Xt} is piecewise stationary, with

Xt =

m∑
s=1

Xs
t δs,m(t), (4)

where the processes {Xs
t } are independent and stationary with means µs,m, spectral densities

fs,m(ω), and δs,m(t) = 1 iff t ∈ (ξs−1,m, ξs,m]. Consider a realization x from (4). RWS12 approxi-

mate the likelihood of x by

g(x | Θ) =

m∏
s=1

p(xs,m | µs,m, fs,m), (5)

where Θ = {m, ξm,µm, f1,m, . . . , fm,m}, ξm = (ξ1,m, . . . , ξm,m)′, µm = (µ1,m, . . . , µm,m)′, xs,m =

{xt : δs,m(t) = 1} are the data for the sth segment, and p(xs,m | µs,m, fs,m) is the Whittle likelihood

(1). The values of m, ξm and fs,m for s = 1, . . . ,m are considered unknown and are assigned priors.

For fs,m, the prior in (3) is used, while m is given the discrete uniform prior between 1 and M . (See

RWS12, for the details of the prior on ξm). RWS12 consider µm to be known and equal to zero, but

this work considers it unknown and assigns to µs,m a uniform prior with support µ− < µs,m < µ+.

A minimum segment length tmin is set to ensure that there are sufficient time periods within each

segment so that the Whittle likelihood approximation is appropriate.

RWS12 describe a reversible jump Markov chain Monte Carlo algorithm (Green, 1995) that
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samples from the posterior distribution of this model that allows AdaptSPEC to handle both

abruptly and slowly varying nonstationary time series, as well as identify whether a time series

is stationary. AdaptSPEC forms the basis of our spectral estimation technique for multiple time

series.

3 Model for multiple time series

In this section we extend the model of Section 2 to multiple time series. Suppose now that

the stochastic process {Xt} has associated covariates u = (u1, . . . , uP )′. We model {Xt} with

a covariate-dependent mixture structure

{Xt} ∼
H∑
h=1

πh(u)gh({Xt} | Θh), (6)

where the mixture component distributions gh are instances of AdaptSPEC (Equation (5)) with

parameters Θh = {mh, ξhm,µ
h
m, f

h
1,m, . . . , f

h
m,m}, 2 ≤ H ≤ ∞, and the mixture weights πh(·) satisfy

0 ≤ πh(·) ≤ 1 and
∑H

h=1 πh(u) = 1. Equation (6) implies that {Xt}’s distribution is determined by

its covariates u, which, importantly, do not vary with time. The purpose of the mixture structure

in Equation (6) is to induce covariate-dependence in a flexible, semi-parametric manner, and we

do not use this structure to perform inference about clustering or the number of clusters among

multiple time series.

Let {x1, . . . ,xN} be a finite collection of N time series, of length n each, where each time series

xj = (x1,j , . . . , xn,j)
′ has covariates uj = (u1,j , . . . , uP,j)

′ for j = 1, . . . , N . Assuming independence

conditional on πh(·) and Θh, it follows from Equation (6) that the joint distribution of the collection

is

p(x1, . . . ,xN ) =

N∏
j=1

H∑
h=1

πh(uj)gh(xj | Θh). (7)
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3.1 Model for mixture weights

For the mixture weights πh(u) in Equation (6), we use the LSBP of Rigon and Durante (2021),

according to which πh(u) is given by

πh(u) = vh(u)
h−1∏
h′=1

(1− vh′(u)), (8)

where logit vh(u) = wh(u), so that wh(u) are the covariate-dependent log odds. This prior allows

for 2 ≤ H ≤ ∞ mixture components, with vH(u) = 1 when H <∞.

As in Rigon and Durante (2021), this construction can be interpreted via sequential (continuation-

ratio) logits (Agresti, 2018). Let zj ∈ {1, 2, . . . ,H} be a latent indicator such that (xj | zj = h) ∼

gh(xj | Θh). Then the LSBP can be represented in a generative manner as a sequence of deci-

sions, where p(zj = 1) = v1(uj) = (1 + exp(−w1(uj)))
−1, p(zj = 2 | zj > 1) = v2(uj) = (1 +

exp(−w2(uj)))
−1, and so on, such that in general, p(zj = h | zj > h− 1) = (1 + exp(−wh(uj)))

−1.

The model in equations (7) and (8) has a similar structure to the classic mixture of experts

model (Jacobs et al., 1991), in which the weights of a finite mixture depend on covariates through

multinomial logits. Our motivation for choosing the LSBP (Equation (8)) over multinomial logits

is to obviate the choice of the number of mixture components. The model in equations (7) and

(8) is in principle an infinite mixture and so the question of the number of components becomes

irrelevant. In practice, however, it is common to truncate the infinite representation at a suitably

high but finite K (Ishwaran and James, 2001). The LSBP is analogous to the probit stick-breaking

process (Chung and Dunson, 2009), where a probit link function is used in place of the logit.

3.2 Model for log odds

We model the log odds by a Gaussian process (GP) prior wh(u) ∼ GP(β0,h+u′βh, τ
2
hΩ(·, ·)), where

β0,h is an intercept, βh = (β1,h, . . . , βP,h)′ is a vector of regression coefficients, τ2h is a smoothing

parameter, and Ω(u,u′) is the covariance kernel constructed via the reproducing kernel Hilbert

space defined by a P -dimensional thin-plate Gaussian process prior (see Wood, 2013). For a finite

collection of N time series {x1, . . . ,xN}, with associated covariates {u1, . . . ,uN}, the log odds
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vector, wh = (wh(u1), . . . , wh(uN ))′, has a multivariate normal distribution

wh ∼ N(β0,h1N + Uβh, τ
2
hΣw), (9)

where 1N is an n × 1 vectors of ones, U = (u1, . . . ,uN )′ is an N × P matrix, and Σw is an

N × N matrix whose j1j2th entry is equal to Ω(uj1 ,uj2). To facilitate the posterior sampling

scheme in Section 4, we transform the problem via a basis expansion (Wood, 2013). Let Σw =

QDQ′ be the eigenvalue decomposition of Σw, where Q is an N × N orthogonal matrix whose

columns are the eigenvectors of Σw, and D is a diagonal matrix containing the eigenvalues of

Σw. Define U † = (1N , U,QD
1/2) by columnwise concatenation, let βGP

h be an N × 1 vector, and

β†h = (β0,h,β
′
h,β

GP′
h )′. The first column of U † is a vector of ones, the next P columns of U † (equal

to U) are the original covariates, while the last N columns (equal to QD1/2) are basis functions,

with associated coefficients βGP
h . For computational convenience and parsimony, we truncate the

basis expansion to the first B < N basis functions, so that U † is N × (P + B + 1) and β†h is

(P +B + 1)× 1. Equation (9) now takes the form

wh = U †β†h,

βGP
h ∼ N(0B, τ

2
hIB),

(10)

where 0B is an B × 1 vector of zeros, and IB is the B × B identity matrix. This basis expansion,

combined with the interpretation via sequential logits given in the previous section, facilitate the

development of the posterior sampling scheme presented in Section 4.

The expression for vh(uj) becomes logit vh(uj) = u†′j β
†
h, where u†′j is the jth row of U †. The

prior placed on (β0,h,β
′
h)′ is N(µβ,Σβ), where µβ is a (P+1)×1 vector and Σβ is a (P+1)×(P+1)

covariance matrix, so that

β†h ∼ N

µβ
0B

 ,

Σβ 0

0 τ2hIB

 .

Finally, to complete the model specification, we assign τh a half-t distribution (Gelman, 2006) with
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τh β†h πh(uj)

uj

zj xj ∼ gh(xj | Θh)

Θh

LSBP AdaptSPEC

B,H M, J, tmin, µ−, µ+

AdaptSPEC-X

Figure 1: A graphical representation of AdaptSPEC-X. The bottom row lists the main
hyperparameters.

density

p(τh) ∝

(
1 +

1

ντ

(
τh
Aτ

)2
)−(ντ+1)/2

, τh > 0,

where Aτ and ντ are scale and degrees of freedom parameters, respectively. As described in Ap-

pendix A in the supplementary material, the half-t distribution can be expressed as a scale mixture

of inverse Gamma distributions, which simplifies the sampling of τh. For the results in this paper,

we set µβ = 0, Σβ = 100IP+1, ντ = 3 and Aτ = 10.

Figure 1 displays a graphical summary of the model in Equations (5) to (10), showing the

dependence between the data, covariates, parameters, and hyperparameters.

3.3 Missing values

The model can accommodate missing values by exploiting the fact that the Whittle likelihood de-

scribes a multivariate normal distribution (Whittle, 1953). Under the assumption that the missing

data mechanism is ignorable (see Rubin, 1976, for minimal sufficient conditions under which this

is true), we show below that this property of the Whittle likelihood implies that the conditional

distribution of the missing values is also multivariate normal, and we use this fact to accommodate

missing values by integrating them out as part of the MCMC scheme in Section 4. Ignorability

of the missing data mechanism is sufficient for inference on the model parameters, but further

assumptions, such as that the data are missing completely at random (MCAR; see Rubin, 1976),

are required if inference is made on the missing values themselves.

For ease of exposition, in this section we first return to the case where x is a single stationary

time series with spectral density f , then later describe how this is extended to multiple nonsta-
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tionary time series. Define the n × n matrix V with entries Vtk = 1√
n

exp (−2πi(t− 1)ωk) for

t = 1, . . . , n and k = 0, . . . , n− 1. It then follows that V ′(x− µ) = (d1, . . . , dn)′, where dk is given

in (2). Noting that V is a unitary matrix, (1) may be rewritten as

p(x | µ, f) =
1

(2π)n/2
|R|1/2 exp

{
−1

2
(x− µ)′V RV ∗(x− µ)

}
,

where R = diag(r), r = (1/f(ω1), . . . , 1/f(ωn))′, and V ∗ is the conjugate transpose of V . The

precision matrix Λ = V RV ∗ is symmetric and circulant, and is thus defined by its first column,

with entries Λt,1 = 1
n

∑n
k=1

1
f(ωk)

e−2πi(t−1)ωk (see Appendix B in the supplementary material for a

derivation). Suppose some values of x are missing, and write x = (x′mis,x
′
obs)

′, where xmis and xobs

are the missing and observed values, respectively. From standard multivariate normal conditioning

results and under the assumption of ignorability,

(xmis | xobs, µ, f) ∼ N(µmis|obs,Λ
−1
mis|obs), (11)

where

µmis|obs = µ− Λ−1mis,misΛmis,obs(xobs − µ),

Λmis|obs = Λmis,mis,

(12)

and the quantities in Equation (12) can be obtained from expressing Λ as

Λ =

Λmis,mis Λmis,obs

Λ′mis,obs Λobs,obs

 =

VmisRV
∗
mis VmisRV

∗
obs

VobsRV
∗
mis VobsRV

∗
obs

 , (13)

in which Vmis and Vobs are matrices made up of the rows of V corresponding to the missing and

observed times, respectively. The quantities in Equation (13) can be computed efficiently by the

fast Fourier transform. When simulating from Equation (11), the most computationally intensive

step is the inversion, Λ−1mis,mis, in Equation (12). In a general framework for spectral estimation with

stationary time series, Guinness (2019) describes computationally efficient methods for missing data

imputation that could be used to simulate from Equation (11). For this article we compute Λ−1mis,mis

the usual way, i.e., via its Cholesky decomposition.
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Missing values may be accommodated in AdaptSPEC by partitioning the data in each segment,

xs,m, into missing and observed times as above, and sampling from (11) for each segment as part

of the MCMC scheme. As shown in the next section, this is extended to the full AdaptSPEC-X

model by conditioning on the latent indicators z.

The Whittle likelihood is used in AdaptSPEC-X in two ways: first, as a nonparametric tech-

nique based on its asymptotic properties (see Section 2 and RWS12), and second, in the assumption

that the missing values follow a multivariate normal distribution. We justify the latter assumption

in several ways. First, Guinness (2019), who makes a similar assumption regarding missing values,

found through both theory and numerical experiments that the assumption did not have a delete-

rious effect on spectral estimation. Second, it is hard to avoid making some assumption about the

distribution of the missing values, and multivariate normality is arguably the most parsimonious

choice, as it requires only the first two central moments to be specified (the minimum necessary

to have mean and spectrum consistent with the observed data). Finally, as shown above and in

Guinness (2019), the assumption is computationally convenient.

4 Sampling scheme

Define z = (z1, . . . , zN )′, xall = (x′1, . . . ,x
′
N )′, β† = {β†1, . . . ,β

†
H−1}, Θ = {Θ1, . . . ,ΘH}, and

τ = (τ1, . . . , τH−1)
′. Let xall = (xall′

misx
all′
obs)

′ be the decomposition of xall into missing and observed

times, respectively. Values produced in steps 2, 3, 4, and 5 of the MCMC sampling scheme below

are indicated by the superscript ‘[l + 0.5]’, and are then used in a label swapping move in Step 6

to produce the (l + 1)th iteration. As described below, this move improves convergence of the

following sampling scheme.

Step 1. (x
all[l+1]
mis | β†[l],Θ[l], z[l],xall

obs) as per Section 3.3.

Step 2. (Θ
[l+0.5]
h | xall[l+1]

mis , z[l],xall
obs) for each h = 1, . . . ,H. This step is potentially transdimen-

sional, and uses the reversible-jump MCMC scheme of RWS12, with two modifications. The

first one samples the segment means, µhm, as described in Appendix A.1.1 in the supple-

mentary material. The second modification incorporates a Riemann manifold Hamiltonian

Monte Carlo (RMHMC for short, see Girolami and Calderhead, 2011) step to accelerate

convergence, as described in Appendix A.1.2.
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Step 3. (z[l+0.5] | β†[l],Θ[l+0.5],x
all[l+1]
mis ,xall

obs).

Step 4. (β
†[l+0.5]
h | τ [l], z[l+0.5]) for each h = 1, . . . ,H. This uses the Polya-Gamma data augmen-

tation scheme developed by Polson et al. (2013), as applied to the LSBP by Rigon and

Durante (2021).

Step 5. (τ
[l+0.5]
h | β†[l+0.5]) for each h = 1, . . . ,H.

Step 6. (Θ[l+1], z[l+1],β†[l+1], τ [l+1] | xall[l+1]
mis ,xall

obs) using a label swapping step, described below.

The details of steps 2, 3, 4, and 5 are presented in Appendix A in the supplementary material,

while Step 1, for xmis, is described in Section 3.3. For Step 6, we adapt a label swapping move from

Hastie et al. (2015), who find that it improves convergence in the context of MCMC samplers for

Dirichlet process mixture models. The label swapping step is composed of the following substeps:

Step 6a. Pick uniformly at random components h1, h2 ∈ {1, . . . ,H}, h1 < h2, to swap.

Step 6b. Construct proposal component indicators zswap and Θswap such that

zswapj =



h2 if z
[l+0.5]
j = h1,

h1 if z
[l+0.5]
j = h2,

z
[l+0.5]
j otherwise,

Θswap
h =



Θ
[l+0.5]
h2

if h = h1,

Θ
[l+0.5]
h1

if h = h2,

Θ
[l+0.5]
h otherwise.

Step 6c. Construct proposal τ swap by setting

τ swaph =



τ
[l+0.5]
h2

if h = h1

τ
[l+0.5]
h1

if h = h2

τ
[l+0.5]
h otherwise,

and sample proposal β†swaph1
,β†swaph2

from

q(β†swaph | z[l+0.5], τ [l+0.5]) ∼ N(µmode
h ,Σmode

h ),
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where µmode
h and Σmode

h are the mode and the negative inverse of the Hessian, respectively,

of log p(β†swaph | zswap, τ swap).

Step 6d. Accept the swap with probability equal to the Metropolis-Hastings ratio

min

{
1,

p(β†swap, zswap,Θswap, τ swap | xall[l+1]
mis ,xall

obs)

p(β†[l+0.5], z[l+0.5],Θ[l+0.5], τ [l+0.5] | xall[l+1]
mis ,xall

obs)

q(β
†[l+0.5]
h1

| zswap, τ swap)

q(β†swaph1
| z[l+0.5], τ [l+0.5])

q(β
†[l+0.5]
h2

| zswap, τ swap)

q(β†swaph2
| z[l+0.5], τ [l+0.5])

}
.

If accepted, set β†[l+1], z[l+1],Θ[l+1] and τ [l+1] equal to β†swap, zswap,Θswap and τ swap,

respectively. Otherwise, β†[l+1], z[l+1],Θ[l+1] and τ [l+1] are set to β†[l+0.5], z[l+0.5],Θ[l+0.5]

and τ [l+0.5], respectively.

In Step 6b, the labels of the component indicators for the chosen pair h1, h2 are swapped,

as are the corresponding mixture component parameters Θh, leaving the likelihood unchanged.

Step 6c swaps the smoothing spline parameters τh1 , τh2 and samples new values of β†h from a normal

approximation centered on its conditional mode. The latter new values are necessary because due

to the sequential nature of the LSBP, merely swapping the values of β†h1 and β†h2 is unlikely to

result in an acceptable proposal.

AdaptSPEC-X is implemented in the latest version of the R package BayesSpec.2 The imple-

mentation is in R and C++, and can take advantage of multiple processor cores to reduce the

running time of the analysis.

5 Simulation studies

This section reports on simulation results to study the proposed method, as well as to compare

it with another method in the literature. Section 5.1 focuses on the advantages of AdaptSPEC-X

for joint modeling of multiple nonstationary time series, comparing it to separate applications of

AdaptSPEC to multiple time series. To this end, multiple time series with time varying means

and spectra at both observed and unobserved covariate values are generated repeatedly. This

2Available from GitHub at https://github.com/mbertolacci/BayesSpec/. As of publication, the ver-
sion of the package on CRAN does not contain AdaptSPEC-X.
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simulation demonstrates AdaptSPEC-X’s ability, quantified by mean squared error, to estimate

time varying means and spectra at both observed and unobserved covariate values. This study also

illustrates AdaptSPEC-X’s ability to provide out-of-sample predictions, which are not available

when AdaptSPEC is fitted separately to individual time series. Section 5.2 compares AdaptSPEC-

X to the conditional adaptive Bayesian spectrum analysis (CABS) method of Bruce et al. (2018)

which is capable of estimating the time-varying spectra of a panel of time series, given a single

covariate. Our simulation results demonstrate superior performance of AdaptSPEC-X in terms of

mean squared error.

5.1 Joint versus separate modeling

Let U = (u1, . . . ,u100)
′ be a 100× 2 design matrix corresponding to N = 100 subjects, each with

two covariates, where the uj , j = 1, . . . , N , are sampled uniformly from [0, 1] × [0, 1]. Each uj is

mapped deterministically to a region rj ∈ {1, 2, 3, 4}, according to the plot shown in Figure 2(a),

which also includes the locations of the 100 sampled points, denoted by crosses. Four locations are

chosen as example time series, marked in green circles, and labeled D1 through to D4 (corresponding

to rj = 1 through rj = 4, respectively). Four more locations are marked in red diamonds labeled

T1 through to T4 (again for rj = 1 to 4). These values of u have no corresponding time series and

are used as test points to evaluate the predictive inferences. The four different regions correspond

to four different data generating processes. Each time series xj , within region rj , j = 1, . . . , 100, is

a realization of length n = 256 from

(xj,t − µrj ,t) = φrj ,1,t(xj,t−1 − µrj ,t−1) + φrj ,2,t(xj,t−2 − µrj ,t−2) + εj,t, (14)

where εj,t ∼ N(0, 1), and the values of µrj ,t and φrj ,p,t are given in the following table:

t ≤ 128 t > 128
µrj ,t φrj ,1,t φrj ,2,t µrj ,t φrj ,1,t φrj ,2,t

rj = 1 -1.5 1.5 -0.75 -2 -0.8 0
rj = 2 1 -0.8 0 -1 -0.8 0
rj = 3 0 1.5 -0.75 0 1.5 -0.75
rj = 4 1 0.2 0 1 1.5 -0.75

Thus, time series with rj = 1 have two segments with different means and different spectra,

those with rj = 2 have two segments with different means but with the same spectra, time series
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Figure 2: (a) Underlying surface mapping uj to rj for Process (14), where the 100 sampled
locations are shown as crosses. Regions, rj, for j = 1, . . . , 4, are identified by colors. Four
points are used as examples in the paper and are denoted by green circles and labeled D1
to D4. Four test points labeled T1 to T4 are shown with red diamonds. (b) Example
realizations from Process (14) corresponding to rj = 1 at the top through rj = 4 at the
bottom. Black lines give the values of the time series, blue lines the underlying time-varying
mean µrj ,t, and red ticks on the bottom axis mark missing values.

with rj = 3 have only one stationary segment, and those with rj = 4 have two segments with the

same mean but with different spectra. In each time series, 10% of the times are set as missing.

Figure 2(b) displays example realizations from Process (14) for rj = 1, 2, 3 and 4, showing the time

series values, underlying time-varying mean, and the times at which values are missing.

We sample 100 replicates from Process (14), and to each fit AdaptSPEC-X using the MCMC

sampling scheme of Section 4. We run 50,000 iterations of the MCMC scheme, where the first

10,000 are discarded as burn-in. Each mixture component has M = 4, as the maximum number of

segments, tmin = 40, as the minimum segment length, J = 25, as the number of basis functions for

the smoothing spline prior on the log spectra (see Section 6.1, where we discuss how the selection

of J relates to that of tmin), and (µ−, µ+) = (−10, 10), as the support of the prior on µhs,m. The

LSBP is truncated at H = 25 components, and has B = 10 basis functions. The MCMC scheme

for each replicate takes around 1.5 hours to run when using two cores on a computer with an Intel
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Figure 3: MSE across 100 replications for estimates of mean (top) and spectrum (bottom)
for Process (14) at the observed u = D1–D4 and the unobserved u = T1–T4 from left to
right, respectively. For the observed locations, green boxplots show the MSE from estimates
made using independent fits of AdaptSPEC to the replicates.

Core i9-9900K CPU with a clock speed of 3.60 GHz.

To assess the quality of the estimated time-varying mean, we define the mean squared error

(MSE) for the mean as

MSEmean(u) =
1

n

n∑
t=1

[µ̂(t,u)− µ(t,u)]2 , (15)

where µ̂(t,u) is the estimate of µ(t,u), the true time-varying mean at covariates u. Similarly, we

define the MSE for the spectrum as

MSEspec(u) =
1

n

1

kmax

n∑
t=1

kmax∑
k=1

[
log f̂

(
t,

k − 1

2kmax − 2
,u

)
− log f

(
t,

k − 1

2kmax − 2
,u

)]2
, (16)

where kmax = 128, and log f̂(t, ω,u) is the estimate of log f(t, ω,u), the true time-varying log

spectral density at location u.

Figure 3 presents boxplots of MSEmean (top) and MSEspec (bottom), at each observed location,

D1–D4, and unobserved test location, T1–T4, from left to right, respectively. We now fit the

AdaptSPEC model (RWS12) to each replicate of D1–D4 individually, and the green boxplots in

Figure 3 show MSEmean and MSEspec for those fits.

The median MSEmean of AdaptSPEC-X is substantially smaller than that of the individual
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AdaptSPEC fits at D1, D3, and D4, and its interquartile range is narrower. Similarly, the median

MSEspec of AdaptSPEC-X is smaller than that of individual AdaptSPEC fits at D1, D3, and

D4. This demonstrates the benefits of applying a joint model to multiple time series, in that the

ability to group them together via the covariates can lead to improved estimation performance.

The exception to this is the performance at D2, for which AdaptSPEC-X does worse, and we

discuss possible reasons for this below. For the test points T1–T4, the predictive performance of

AdaptSPEC-X as measured by MSEmean and MSEspec is comparable to the observed points D1–D4.

The test points are unobserved, so individual fits of AdaptSPEC to the observed series do not allow

prediction of their time-varying mean and spectra. This is another benefit of jointly modeling the

data by including covariates.

AdaptSPEC-X’s estimates of the time-varying mean and spectrum corresponding to the median

MSE values are shown in figures 4 and 5, respectively. These qualitatively match the MSEmean and

MSEspec scores, in that the estimates for points other than D2 and T2 are visually very close to

the truth, while for D2 and T2 some differences are visible.

There are several explanations for the worse performance for D2 and T2 relative to the other

points. One reason is that the spatial model has relatively little information to identify the existence

of a region: these points belong to region two, which is represented by only eight time series (in

contrast to regions one, three, and four, which have 41, 18, and 33 members, respectively), and

which has the smallest spatial area in the study. Another reason is that the process mean for region

two (equal to 1 in the first half and −1 in the second half) is similar to that of the surrounding

region four (constant mean of 1), making it harder to distinguish between the regions. For both

reasons, it is not surprising to see worse performance for T2 and D2, which corresponds to good

model behavior in the sense that it represents genuine model uncertainty. This is seen in Figure 4,

where the µ̂(t,u) for T2 and D2 in the second half of the time series is shrunk towards that of

region four, the enclosing region. It is also worth noting that the median MSEmean and MSEspec

for T2 and D2 are small relative to the scales of their mean and log spectrum, respectively. This

can also be seen qualitatively by the similarity between the true and estimated mean and spectra

in figures 4 and 5.
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Figure 4: Estimated mean µ̂(t,u) corresponding to the median MSEmean(u) (red) and true
mean µ(t,u) (blue) for Process (14). The first row shows the estimates for u = D1–D4
from left to right, respectively, while the second row shows the estimates for test points u =
T1–T4.

Figure 5: Estimated time-varying log spectra log f̂(t, ω,u) corresponding to the median
MSEspec(u) and true time-varying log spectra log f(t, ω,u) for Process (14). The first row
shows log f(t, ω,u) for u = D1–D4 from left to right, respectively, while the second row shows
the estimates log f̂(t, ω,u). The third and fourth rows display the analogous quantities for
the test points u = T1–T4.
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5.2 Comparison of AdaptSPEC-X and CABS

CABS is a method for estimating the time-varying spectra of a panel of time series, {xj : j =

1, . . . , N}, for xj = (x1,j , . . . , xn,j)
′, where each time series is associated with a single covariate value

uj . It extends AdaptSPEC to multiple time series by partitioning the covariate in the same way

that AdaptSPEC partitions the time series, such that the spectral density is constant as a function

of the covariate within a ‘rectangle’ in time and covariate space. Unlike CABS, AdaptSPEC-X is

able to handle an arbitrary number of covariates, because there is no need to adaptively divide the

covariate space. AdaptSPEC-X is richer in features than CABS, but for the purposes of comparison

we evaluate AdaptSPEC-X and CABS in a setting that is applicable to both methods. To this end,

we reproduce the simulation study presented by Bruce et al. (2018), which examined the ability

of CABS to estimate the time-varying spectra of a collection of time series drawn from known

processes. The simulation study considers two cases: one in which time series have abrupt changes

in their spectra, and another where changes occur slowly. In both cases, there are N time series of

length n each, with a single covariate, taking the values uj = (j− 1)/(N − 1), j = 1, . . . , N , that in

turn determine the spectra of the corresponding time series. The jth abruptly varying time series

is simulated from a piecewise AR(1) processes, {xt,j : t = 1, . . . , n}, for which

xt,j =

 −φjxt−1,j + εt,j , 1 ≤ t ≤ n/2

φjxt−1,j + εt,j , n/2 < t ≤ n
, where φj =

 0.5, 0 ≤ uj ≤ 0.5

0.9, 0.5 < uj ≤ 1
(17)

and εt,j ∼ i.i.d. N(0, 1). The jth slowly varying time series is simulated from a time-varying AR(1)

process with

xt,j = φt,jxt−1,j + εt,j , where φt,j =

 −0.5 + t/n, 0 ≤ uj ≤ 0.5

−0.9 + 9t/(5n), 0.5 < uj ≤ 1
(18)

and εt,j ∼ i.i.d. N(0, 1).

Bruce et al. (2018) apply CABS to 100 replicates from processes (17) and (18) over the nine

(N,n) combinations, where N ∈ {20, 40, 80} and n ∈ {1000, 2000, 4000}, and evaluated its ability

to estimate the time-varying log spectra of the time series. Here we repeat this evaluation using

AdaptSPEC-X. To faciliate comparison, for quantities that are common to CABS and AdaptSPEC-
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X we use the same values: tmin = 50 (minimum segment length); M = 10 (the maximum number of

segments); and J = 7 (the number of basis functions for the smoothing spline on the log spectrum;

B in the notation of Bruce et al. (2018)). The number of segments in covariate space in CABS is

set equal to eight. In AdaptSPEC-X, we set the number of mixture components to H = 10, and

the number of basis functions in covariate space to B = 10. Bruce et al. (2018) run MCMC chains

for 5,000 iterations with a warm-up of 1,000 iterations; we run AdaptSPEC-X for 10,000 iterations

with a warm-up of 1,000 iterations. For AdaptSPEC-X, running the MCMC scheme took between

five minutes (for N = 20, n = 1000) and 30 minutes (for N = 80, n = 4000) using one core of a

desktop with an Intel Core i9-9900K CPU with a clock speed of 3.60 GHz.

To evaluate the performance of CABS at estimating the true time-varying log spectrum, Bruce

et al. (2018) use the mean-squared error (MSE), calculated according to equation (16). For a

particular combination (n,N), and underlying process (abrupt or slow), a mean MSE was calculated

across the N time series within each of the 100 replicates. The mean and standard deviation of the

mean MSE across the replicates was then calculated. Table 1 presents the mean MSE (and standard

deviations in parentheses) for both CABS, as reported in Bruce et al. (2018), and AdaptSPEC-X.

The ratio of the mean MSE for CABS to the mean MSE for AdaptSPEC-X is also presented,

showing that the mean MSE for CABS is between 2 to 5 times as large as that of AdaptSPEC-X

when estimating the log spectra of the abruptly varying time series, and between 1.3 to 1.5 times

as large for the slowly varying process.

The fact that AdaptSPEC-X outperforms CABS in both simulation settings suggests that the

mixture model of AdaptSPEC-X is able to share information between time series more efficiently

than the covariate-space partitioning scheme in CABS, despite the fact that the covariate depen-

dence in equations (17) and (18) is abrupt and should lend itself to the way CABS partitions

the covariate space. It appears that the covariate-dependent infinite mixture combined with the

thin-plate splines used by AdaptSPEC-X are sufficiently flexible to handle this feature.

6 Applications

In this section, we describe two applications. Section 6.1 considers Australian rainfall, while inci-

dence counts of measles in the United States are analyzed in Section 6.2.
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Abruptly varying Slowly varying
n N CABS AdaptSPEC-X Ratio CABS AdaptSPEC-X Ratio

1000 20 0.1190 (0.0580) 0.0339 (0.0113) 3.5 0.0353 (0.0052) 0.0245 (0.0027) 1.4
1000 40 0.1130 (0.0598) 0.0266 (0.0071) 4.3 0.0260 (0.0031) 0.0184 (0.0021) 1.4
1000 80 0.1079 (0.0557) 0.0201 (0.0027) 5.4 0.0206 (0.0026) 0.0135 (0.0015) 1.5
2000 20 0.0748 (0.0252) 0.0316 (0.0084) 2.4 0.0249 (0.0035) 0.0180 (0.0017) 1.4
2000 40 0.0755 (0.0274) 0.0242 (0.0039) 3.1 0.0185 (0.0017) 0.0130 (0.0010) 1.4
2000 80 0.0702 (0.0230) 0.0198 (0.0039) 3.5 0.0148 (0.0013) 0.0101 (0.0009) 1.5
4000 20 0.0617 (0.0121) 0.0300 (0.0076) 2.1 0.0177 (0.0019) 0.0135 (0.0010) 1.3
4000 40 0.0610 (0.0133) 0.0249 (0.0064) 2.5 0.0137 (0.0012) 0.0101 (0.0007) 1.4
4000 80 0.0607 (0.0135) 0.0192 (0.0032) 3.2 0.0110 (0.0009) 0.0082 (0.0007) 1.3

Table 1: The mean (standard deviation) of the MSEs across the 100 replicates for estimating
the log spectra of the time series in the simulation study using CABS and AdaptSPEC-X.
The ratio of the mean MSE for CABS to the mean MSE for AdaptSPEC-X is also presented.
The values for CABS are taken from Bruce et al. (2018).

6.1 Australian rainfall data

Rainfall is governed in large part by cyclical processes, in particular the seasonal cycle driven by

the Earth’s orbit around the sun. It has therefore historically been a natural application area for

spectral methods. These have been used to study interannual variation (see, among many others,

Alter, 1924; Rajagopalan and Lall, 1998; Ansell et al., 2000), intraannual or intraseasonal varia-

tion (Joshi and Pandey, 2011), and the connections between rainfall and other climatic processes

(Rajagopalan and Lall, 1998; Ansell et al., 2000). Here we focus on identifying changes in both the

mean and spectrum of Australian rainfall. As part of a report on climate change tendered by several

Australian government agencies, Cai et al. (2007) find that, since 1950, the Australian north has

seen increased annual rainfall, while the southeast and southwest have experienced the opposite.

The causes of these trends have been the subject of study and debate (see, among others, Hope

et al., 2006; Ummenhofer et al., 2009; Pook et al., 2012; Risbey et al., 2013). Apart from trends in

overall rainfall, several authors have reported relative increases in heavy rainfall events, indicating

changes in the variability of rainfall (Cai et al., 2007; Gallant et al., 2013). We contribute to this

literature by using AdaptSPEC-X to analyze the time-varying mean and spectrum of Australian

rainfall from sites dispersed over a wide spatial field, addressing simultaneously the question of

whether changes have occurred in rainfall levels and rainfall variability.

We use data from Bertolacci et al. (2019), who studied the climatology of Australian daily
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rainfall using measurements from 17,606 sites across the continent. In particular, we use 151 of

these sites characterized by having long and nearly contiguous rainfall records, the locations of

which are displayed in Figure 6(a). These sites are among those identified by Lavery et al. (1992)

as having high quality records suitable for monitoring and assessing climate change. The raw time

series are daily, and observations are typically made at 9 am local time, recording the total rainfall

in millimeters (mm) for the previous 24 hours. Aggregation to monthly data is performed by

calculating the average daily rainfall for the month. To avoid artifacts, we consider as missing any

month with fewer than fifteen days of measurements available (that is, not missing). We choose to

aggregate the data to monthly intervals in order to focus the analysis on climatic changes to the

spectrum, which occur on time scales much longer than a month. A secondary benefit is that doing

so requires much fewer basis functions for the smoothing splines on the log spectrum. This is due

to the fact that the dominant feature of the data is the seasonal cycle at a period of 365.25 days

for the daily data, and such a low frequency spike can only be accommodated by a high value of J .

The resulting time series span the 1,078 months from September, 1914 to June, 2004 (inclusive),

for a total of 162,778 observations, of which 4,095 are missing. The smallest possible measurement

is 0 mm, corresponding to no rainfall for the month; this is true for 9,933 months. Time series

for four example sites are displayed in Figure 6(b), and their locations are marked on inset maps

(also marked in green in Figure 6(a)). The four time series span a wide range of average rainfall

levels from around 1mm at site 47053 to 4mm at site 14042. They also exhibit varying levels of

seasonality, where sites 10525 and 14042 have highly seasonal rainfall, while rainfall at sites 47053

and 69018 is less seasonal.

We fit AdaptSPEC-X to these data, setting uj = (lonj , latj), the longitude and latitude of the

sites. Each mixture component has tmin = 60 (5 years), chosen to ensure several observations of

the dominant annual cycle are available. This constrains the maximum number of segments to be

Mmax = 17. We choose J = 60 for the number of basis functions for the smoothing spline prior on

the log spectra. Preliminary fits of AdaptSPEC to the individual time series indicated that using

J > 60 makes little difference with respect to the estimated log spectra compared to J = 60. Also,

since tmin = 60, for short segments increasing the value of J is not likely to be beneficial. The

support of the prior on µhs,m is set to (µ−, µ+) = (0, 30). The lower bound reflects the positivity

of rainfall, while the upper bound is three times larger than the largest empirical mean attained in
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Figure 6: (a) Locations of the 151 rainfall sites. Four example sites are marked with green
circles, and four test locations are marked with red diamonds. (b) Monthly rainfall records
at the four example sites, whose locations are indicated by inset maps. Missing values are
marked with red ticks on the bottom axis.
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any 5-year period in the data. The LSBP is truncated at H = 25 components, as higher values of

H made no difference to the estimates. Finally, the thin-plate GP prior for the LSBP has B = 20

basis functions, which captures more than 95% of the variation implied by the prior. In addition

to the locations with measurements, we estimate the predictive time-varying mean and spectrum

at four locations on the Australian landmass without measurements. These locations are indicated

by red diamonds in Figure 6(a). The MCMC scheme ran for six hours using four cores of an Intel

Core i9-9900K CPU with a clock speed of 3.60 GHz.

The estimated time varying means µ̂(t,u) are shown in Figure 7, where the first two rows

display the estimates for the four example sites, and the last two rows present predictive estimates

for the four test locations which do not have observations. The corresponding estimated time

varying log spectra log f̂(t, ω,u) are shown in Figure 8. Figures 7 and 8 show that the model has

accommodated considerable variation between sites, with mean monthly rainfall ranging from 1mm

at site 47053 to 3.5mm at 14042, and with spectra similarly varied. The dominant period at all

sites is 12 months, corresponding to the Earth’s orbit around the sun. There is also considerable

power at lower frequencies, indicating long-term dependence. The predictive means and spectra

at unobserved sites match qualitative expectations. For example, among the unobserved locations,

Test Point 2 has the heaviest mean rainfall and the most power in its spectrum, reflecting its

location in the tropics.

Two major droughts occurred during the study period: the World War II drought of 1937–1945,

and the Millennium drought that started in 1996 and was still ongoing by the end of the study period

in 2004 (Ummenhofer et al., 2009). Table 2 presents estimated posterior probabilities of changes

in the mean µ(t,u) or variance σ2(t,u) = 2
∫ 1/2
0 f(t, ω,u)dω around these times. Specifically, it

shows that P̂ (µ1940 < µ1950) > 0.9 and P̂ (σ21940 < σ21950) > 0.9 at all four sites. However, P̂ (µ1940 <

µ1930) < 0.7 and P̂ (σ21940 < σ21930) < 0.57 except for site 69018 for which these probabilities are

greater than 0.8. The Millennium drought is associated with drops in µ(t,u), σ2(t,u) or both

at sites 14042, 47053 and 69018 as can be seen from the estimated probabilities at these sites:

P̂ (µ2004 < µ1990) > 0.9 and P̂ (σ22004 < σ21990) > 0.93. Site 10525 in the southwest of the continent

does not exhibit a drop with probability greater than 0.9, consistent with the fact that the drought

principally affected southeastern Australia (Ummenhofer et al., 2009).

Cai et al. (2007) report large trends in rainfall since 1950. For southeast Australia, they
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Figure 7: Estimated time-varying means µ̂(t,u) for four monthly rainfall sites (first two
rows), and four locations without observations (last two rows).

Site (u)

Event p̂(· | x) 10525 14042 47053 69018

WW2 drought

µ(1940-01,u) < µ(1930-01,u) 0.540 0.442 0.697 0.801

σ2(1940-01,u) < σ2(1930-01,u) 0.574 0.391 0.508 0.833

µ(1940-01,u) < µ(1950-01,u) 0.917 0.980 0.997 0.993

σ2(1940-01,u) < σ2(1950-01,u) 0.997 0.996 1.000 0.997

Millenium drought
µ(2004-01,u) < µ(1990-01,u) 0.878 0.901 0.974 0.942

σ2(2004-01,u) < σ2(1990-01,u) 0.747 0.930 0.999 0.978

Long term
µ(2004-01,u) < µ(1950-01,u) 0.820 0.906 0.939 0.973

σ2(2004-01,u) < σ2(1950-01,u) 0.961 0.955 1.000 0.989

Table 2: Estimated posterior probabilities p̂(· | x) of various events for monthly rainfall at
the four example sites. The events correspond to the WW2 drought (first four rows), the
Millenium drought (second two rows), and long term change (last two rows). For each event
and site (u), the table presents probabilities that the mean µ(t,u) and the variance σ2(t,u)
changed before or after the event.
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report reductions in annual rainfall corresponding to 10–15mm/decade for the site 47053 and

50mm/decade for 69018. Consistent with this, Table 2 shows that, for these sites, AdaptSPEC-X

estimates that both µ(t,u) and σ2(t,u) declined between January, 1950 and January, 2004 with

probability greater than 0.94. The estimated drop in µ(t,u) for site 47053 corresponds to a reduc-

tion of 1–16mm/decade3 (10th–90th percentile), consistent with Cai et al.’s estimate. However, for

site 69018, the estimated reduction is 6–42mm/decade, substantially less than 50mm/decade. For

the site 14042 in the tropical north, Cai et al. estimate increases of around 40mm/decade since

1950, while the estimates of Table 2 indicate a decline over the same period. Finally, Cai et al.

report a decline of 20–30mm/decade in the region of southwest Australia containing the site 10525,

but Table 2 does not indicate a significant change in µ(t,u) at this location (though the variance

does appear to have declined). In contrast to Cai et al. and Gallant et al. (2013), the reduction in

σ2(t,u) since 1950 at all locations suggests that rainfall variability has declined. This could have

resulted from the use of different definitions of variability, e.g., counts of extreme events as in Cai

et al. (2007), versus our use of change in variance.

6.2 Measles incidence in the United States

Measles is a highly contagious disease that causes fever, cough, runny nose, and a rash (Moreno,

2018). Complications of measles can include pneumonia, deafness, or death (Moreno, 2018). Prior

to the licensing of a vaccine in 1963, the incidence rate of measles averaged 318 cases per 100,000

population per year, with outbreaks occurring annually or every other year (van Panhuis et al.,

2013). After vaccine licensure, incidence declined dramatically, and endemic measles transmission

was declared eliminated from the United States in 2000 (Katz and Hinman, 2004). As part of a

study on the impact of vaccination for a variety of contagious diseases, van Panhuis et al. (2013)

present a unique data set by digitizing weekly surveillance reports from the United States of several

nationally notifiable diseases, including measles, and have made these data available online at the

Project Tycho website4. In this section we analyze Project Tycho’s measles data using AdaptSPEC-

X.

The data comprise weekly time series of measles incidence for each state, reporting the weekly

3Calculated as 10× 365.25× difference in daily average / (2004− 1950)
4https://www.tycho.pitt.edu/
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Figure 8: Estimated time-varying spectra log f̂(t, ω,u) for four monthly rainfall sites (first
two rows) and four locations without observations (last two rows). The color indicates the
log power at the corresponding time and frequency. The ω-axis is on a square-root scale.
The axis on the right-hand side displays the period (1/ω).
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(where the week starts on a Sunday) incidence rate per 100,000 population. In this work we use

time series from the continental United States (that is, excluding Hawaii and Alaska), plus the

District of Columbia. These span the 3,914 weeks from week one of 1928 (which we write as 1928-

01) to week one of 2003 (2003-01). Across all 49 time series there are 191,786 observations. Of

these, 50,067 (26%) are missing, and 30,439 (16%) have incidence equal to zero. The time series

are shown in Figure 9, where each panel presents the series for a state, and the incidence axis is

on a square-root scale (note however that the spectral analysis performed later is applied to the

untransformed data). The layout of the panels roughly matches the geographic distribution of

the states. The most striking aspect of these plots is the dramatic decline in both the level and

volatility of incidence starting in 1963, the year of vaccine licensure.

We set uj = (lonj , latj), the longitude and latitude of the centroid of each state, and fit

AdaptSPEC-X to the measles time series. Each mixture component has tmin = 208 (4 years) as the

minimum segment length. This was chosen to ensure four observations of the annual cycle in each

segment. The maximum number of segments was set as Mmax = 18, the maximum allowed by the

combination of tmin and the number of weeks in the data. The support of the prior on µhs,m was

set to (µ−, µ+) = (0, 20); the lower bound represents the known positivity of the incidence rates

(and is particularly helpful to constrain µhs,m in periods with very small counts), while the upper

bound is twice as large as the posterior mean of this parameter. As in the rainfall application,

preliminary fits of AdaptSPEC to individual measles time series indicated that the estimated log

spectra did not change much for J > 60, and so we set J = 60 in this application as well. The

LSBP is truncated at H = 10 components, as we found higher values did not change the results.

Finally, the thin-plate GP prior for the LSBP has B = 20 basis functions, which captures more

than 95% of the variation implied by the prior. The MCMC scheme took three hours to run on

a computer using four cores of an Intel Core i9-9900K CPU with a clock speed of 3.60 GHz. The

resulting estimated time-varying means and spectra are shown in figures 10 and 11, respectively.

As in Figure 9, the post-vaccine drop in the mean and power of incidence is the most obvious

feature. This drop occurs in steps, starting with a dramatic drop following the licensing of the Ed-

monston vaccine in 1963, stalling around 1970, then dropping again around 1980. This corresponds

to the waxing and waning of government funding and effort targeted at measles elimination, which

culminated in an intensified elimination drive (Hinman et al., 1979; Atkinson et al., 1992). An out-
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break during the early 1990s is visible as an increase in power in Figure 11; this outbreak received

much attention and resulted in changes to the immunization schedule for children (Atkinson et al.,

1992).

In the pre-vaccine period, the spectra in Figure 11 have peaks around frequencies 1/52 and

0, indicating annual seasonality and long-term dependence, respectively. After the introduction of

the vaccine, the annual peak disappears. Grenfell et al. (2001) identify a biennial cycle in similar

measles data for the UK, but this does not appear to be a feature of the US data. Figures 10

and 11 also indicate changes in the mean and spectrum during the pre-vaccine years, where all

states exhibit periods of increased mean incidence and power centered around 1940 and 1955. This

concords with van Panhuis et al. (2013), who note that incidence rates had variable patterns in

the pre-vaccine time period, speculating that these may have been due to sanitation, hygiene, or

demographic factors.

Because of the extreme nonstationarity introduced by the vaccine, the time-varying spectra in

Figure 11 span such a wide range of powers that the spectra for all states look almost identical.

This is not the case: a deeper inspection, for example by magnifying Figure 11, reveals that the

spectra highlights the existence of geographic heterogeneity between states, where higher power is

more typical of the west and north, compared to the south and east.

Since the elimination of endemic measles in the US in 2000, there have been a number of

outbreaks associated with individuals ‘importing’ measles by acquiring the disease while outside

the US and spreading it upon their return (Parker et al., 2006; CDC, 2019). Phadke et al. (2016)

associated several of these outbreaks with individuals unvaccinated for nonmedical reasons, which

they term as vaccine refusal. Some authors have even declared that a resurgence of measles has

occurred (Lynfield and Daum, 2014). Using the AdaptSPEC-X fits, we tested whether the mean

µ(t,u) or variance σ2(t,u) of measles increased from 1995-01, a few years after the big outbreak

in the early 1990s, to 2003-01, the last time period in the data. We find no evidence of increase in

µ(t,u) in any state, which can be seen from the fact that the highest posterior probability of an

increase equals 0.68 in Oklahoma. As for σ2(t,u), the posterior probabilities of an increase in all

states range between 0.81–0.87, which we consider to be weak evidence of change. Unfortunately,

because the data end in 2003, it is not possible to assess changes to the mean or spectrum of measles

incidence in more recent years.
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Figure 10: Estimated time-varying mean µ̂(t,u) for measles incidence, where each panel
shows the estimate for one state.
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Figure 11: Estimated time-varying log spectra, log f̂(t, ω,u) for measles incidence, where
each panel shows the estimate for one state. Colors indicate the log power at the corre-
sponding date and ω. The ω-axis is on a square-root scale. The top axis displays the period
(1/ω).
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7 Discussion

This article has presented AdaptSPEC-X, a Bayesian method for analyzing a panel of possibly non-

stationary time series using a covariate-dependent infinite mixture model, with mixture components

parameterized by their time-varying mean and spectrum. AdaptSPEC-X extends AdaptSPEC to

accommodate multiple time series, each with its own covariate values. Specifically, the covariates,

which are assumed to be time-independent, are incorporated via the mixture weights using the

logistic stick breaking process. The mixture components are based on AdaptSPEC, which handles

a single nonstationary time series. In particular, it partitions a time series into an unknown but

finite number of segments, and estimates the spectral density within each segment by smoothing

splines. New features which have been added to the AdaptSPEC components include estimation

of time-varying means and handling of missing observations. The model and sampling scheme

can accommodate large panels, such as that of the measles application. In addition to estimating

time-varying spectra for each time series in the panel, AdaptSPEC-X allows inference about the

underlying process at unobserved covariate values, enabling predictive inference. Efficient software

implementing AdaptSPEC-X is available in the R package BayesSpec.

In Section 3.2, the log odds of the LSBP, which determine the mixture weights, are modeled

using a thin-plate GP prior. While this prior is flexible, it is also smooth and stationary. This

property may be inappropriate in settings where changes in the mean or spectrum of the individual

time series occur abruptly over the covariate space. An extension to a nonstationary prior for the

log odds, or a piecewise prior as in Bruce et al. (2018), may be of interest in these cases.

AdaptSPEC (and therefore AdaptSPEC-X) relies on Whittle’s approximation to the likeli-

hood (Equation (1)). The Whittle likelihood is asymptotically correct for both Gaussian and

non-Gaussian time series (Hannan, 1973), but is known to be inefficient for small sample sizes

(Contreras-Cristán et al., 2006). Several methods exist in the literature to ameliorate this problem

(see, for example, Sykulski et al., 2019), and these methods might produce useful extensions to

AdaptSPEC for settings with short time series or small segment lengths (i.e., small tmin). Another

feature of AdaptSPEC that is inherited by AdaptSPEC-X is the use of a smoothing splines prior

to model the log spectrum within a segment. While this is a very flexible model, it may not be

optimal in all settings. For instance, if the rainfall application were repeated at the daily scale, the
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smoothing splines would require a very large number of basis functions to accommodate the low

frequency spike at 1 / 365.25 days. Future work into alternative prior structures would be valuable

for this and similar settings.

Neither AdaptSPEC nor AdaptSPEC-X account explicitly for measurement error. For i.i.d.

Gaussian measurement error, this should not cause a problem, as the added variance would appear

as an added constant (that is, white noise) in the spectrum. On the other hand, if the measurement

error is changing over time, this may be estimated as false nonstationary, in the sense that the

underlying process is not actually changing. Adding an explicit layer for measurement error to

AdaptSPEC-X would be a useful extension for these cases. More specialized forms of measurement

error may be useful in other settings. For example, in the measles application of Section 6.2, the

data are incidence rates per 100,000 population. While rates are continuous quantities, they are

constructed from counts, so the measurement process is in fact discrete. A hierarchical extension

accounting for this would be an interesting addition to AdaptSPEC-X.

At present, it is not obvious how to assess the fit to data of AdaptSPEC-X, but we provide

some preliminary thoughts about how this might be done. Diggle and al Wasel (1997) formulate

spectral estimation of a stationary time series as a generalized linear model (GLM) with a log link

function and a gamma family, where the dependent variable is the periodogram. Wahba (1980)

uses this formulation as well. This leads us to think that GLM diagnostics may be possible for

assessing the model fit in our case. However, since our model is piecewise stationary (within mixture

components) with variable partition points, implementing such an approach would require more

research.

AdaptSPEC-X allows for covariates that do not vary with time, and an extension to a more

general framework accommodating time-varying covariates would facilitate new types of inference.

For example, external time-varying climate indicators such as the Southern Oscillation Index are

known to influence rainfall patterns (Bertolacci et al., 2019). A time-varying covariate influencing

the mean or the spectrum might improve predictive performance. One challenge with such an

approach would be to determine how a time-varying covariate could interact with the segmentation

approach used by AdaptSPEC to handle nonstationarity. It would also be interesting to allow the

mean to be time-varying and covariate-dependent within segments, not only between segments.

Future research will focus on these extensions.
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