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Appendix A: Details of the sampling scheme

Stage I:

1. Initialize all the parameters.

2. Draw the lag p from the multinomial distribution
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where Z; = diag(zyp,t = P+ 1,...,n). Note that z;, takes on the same value
(zero or one) for all t € {1+ (s —1)L,...,sL}. The expressions for a; and b; are
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3. Let pyjpr = H (Wil i-1; 5, 05,,). Draw the indicators from
t=1+(s—1)L
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4. Draw 9,, from
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via a Metropolis-Hastings step.



5. For j = 1,...,r, draw ¢, from the multivariate normal distribution with mean
vector (XI’,ZjXp + ¢ 'X)X,) "' X, Z;y* and variance-covariance vector o3,.(X,Z; X, +

(
Jpr
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6. For j = 1,...,r, draw o7, from IG(3 DO D 1+ (s—1)L Ztipr T O Ly M;y* + 3). For

identifiability, we constrain the ijr ’s to be ordered.

Stage II:
As described in Section 3.2, r and p are first drawn from discrete uniform distributions.
The parameter vectors @,,., d,, and v, are then drawn via a Metropolis-Hastings step. The

target distribution is
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where p(r), p(p), p(¢,.), p(6,:) and p(v,,) are the prior distributions. As described in
Section 2, the priors on the ajprs are independent 1G(a, b), and accordingly, the priors on the
Vjp are independent with probability density function p(vj,.) = F( ) exp(—avy, — be irr),
obtained from the transformation v = logo?. To describe the reversible jump step, let
q(r® r® p)|p© p© pl)) where n = (¢/,8’, '), be a transition probability function that
moves the chain from (r(©), p(In©) to (r, p(™ 5™). The superscript (c) denotes the current
value in the chain. The proposal density is given by ¢(r™, p(™|r(©) p(@)q(n™ |r™) p() 5,
i.e., new values ™ and p™ of r and p, respectively, are proposed, and conditional on 7™ and
p™, ™ is proposed. As the density ¢(n™|r™, p™ 7)) we use fys(¢; ép(m,,(n), ﬁ%(mr(n)) X
f5(6; 0,00 (), Z(;p(n)r(n)) X [ (Vs D) i) 5 El,p(n)r(n)), where fy, fs and f, are multivariate normal
densities, and the means and covariance matrices are as described in Section 3.1. The
acceptance probability is

i {1 p(r™, p™, g™ly) q(r, plr, pt)q(n|r, p©, 5™) }
(T(C), C)7 '[](C) |y> (r(”) , p(”) |7‘(C) , p(C))q(n(”) |T(n) , p(n), 17(0))




Appendix B: Simulation results

L=10 L=5

k| 25% 50%  75% 25%  50%  75%
129.9 1624 197.2 42.5 134.2 200.5
11479 184.0 2245 | 114.1 146.5 221.6
168.8 204.1 258.1 | 134.8 200.5 245.1
-39.2  79.1 1722 -92.1 -8.8 150.8
2| 273 130.1 2223 | -374 405 2264
98.5 182.8 2445 -1.1 1509 284.3
28.8 136.6 170.8 -8.1  55.1 152.0
31 115.7 150.2 175.1 16.2 969 189.5
1372 170.8 186.0 50.3 1479 199.1
-91.1  28.1 104.2 | -107.6 -23.6 87.7
41 -148 75.6 1233 | -71.0 23.7 150.0
36.8 104.7 1750 | -23.2 950 1914
7.6 114.0 147.0 | -22.6 129 1125
51 659 139.0 1573 -10.3 62.7 169.2
123.8 147.0 184.0 21.9 118.2 208.8

Table B.1: Percentiles of 100Alog(|K L|) for the k-step-ahead forecasts (middle entry for
each k), k = 1,...,5 and 95% bootstrap confidence limits (first and third lines for each
value of k) for these percentiles; left: segment length, L = 10; right: L = 5.



s| 26%  50%  T5% | s| 25%  B50%  T5%
132.7 2074 2914 185.5 300.6 360.1
5| 170.0 255.8 328.6 | 34 | 212.5 335.7 410.5
209.7 2921 373.3 314.7 369.7 434.1
121.3 214.1 304.9 170.1 244.7 297.5
10 | 177.8 268.9 343.4 |40 | 198.7 285.9 326.5
223.2 307.1 389.7 259.5 302.1 362.2
155.9 237.0 321.2 82.1 93.8 103.6
16 | 181.0 287.1 360.8 | 48 | 89.7 99.1 106.1
240.0 323.1 408.3 94.5 1049 1084
167.4 260.2 336.8 125.5 1372 146.1
22 1193.1 305.1 378.0| 49| 129.0 1424 149.2
263.0 339.6 425.0 138.7 146.7 150.9
180.8 282.9 350.7 159.6 179.0 192.5
28 12019 319.9 394.8 |50 | 1739 188.3 197.9
296.1 354.8 437.2 183.7 194.3 202.3

Table B.2: Percentiles of 100A log(L2) for the log spectral densities in ten different segments
(middle entry for each s) and 95% bootstrap confidence limits (first and third lines for each
value of s) for these percentiles.

k|25% 50% 75% | k|25% 50%  T75%
184 575 848 44.3  74.0 113.0
11352 739 973 ] 6|64.1 100.1 131.1
8.7  86.0 126.6 80.6 113.0 161.9
354 69.2 100.9 42.0 743 111.2
21539 856 1191 | 7631 959 133.3
69.1 101.1 143.7 76.7 112.8 158.5
31.3  65.3 1014 41.3 723 118.7
31512 839 119.5| 8|59.1 93.7 130.5
67.1 107.2 137.8 73.2 118.7 156.5
314 645 108.3 38.4  68.7 108.7
41551 888 1221 9609 94.7 1329
64.5 110.5 1444 69.2 113.3 154.1
375  69.8 110.0 38.9  68.7 109.9
51637 90.8 128910 |63.6 97.2 132.3
72.4 1139 158.6 75.6 110.9 153.6

Table B.3: Percentiles of 100Alog(|K L|) for the k-step-ahead forecasts (middle entry for
each k), £k = 1,...,10 and 95% bootstrap confidence limits (first and third lines for each
value of k) for these percentiles.



s| 25% 50% Th% | s | 25% B50%  75%
-86.4 -45.8  -5.7 -65.8 -41.3 -144
51-629 -242 49.0]| 60 | -56.8 -24.9 4.7
-38.3 -1.8  98.8 -38.5 -144 193
472 86.5 105.0 7.5 588 109.2
15| 742 9477 119.0| 70 | 36.6 83.2 146.2
88.9 105.0 129.1 61.9 109.2 168.9
49.1 87.0 118.7 6.9 539 119.6
25| 75.1 108.3 134.2 | 75| 351 101.0 156.3
88.9 120.1 157.8 62.2 1343 173.1
34.0 73.3 102.6 289 553 88.2
35| 61.1 90.8 116.5 |8 | 40.5 724 1174
73.3 102.7 147.7 62.2 97.1 1728
244 458 68.8 40.7  80.8 120.0
451 390 61.9 914 |95 55.3 101.8 158.3
478 752  98.3 85.7 122.7 216.3

Table B.4: Percentiles of 100A log(L2) for the log spectral densities in ten different segments
(middle entry for each s) and 95% bootstrap confidence limits (first and third lines for each
value of s) for these percentiles.



Appendix C: Addition to Section 5.2

To address the question raised by the referee regarding whether our conclusion in Section 5.2
would change if the true model were AR(10) whose characteristic polynomial had complex
roots, we generated data from such a model and present some results here. Although only
one realization is used, these results are typical of data generated from such a model. The
generated data appear in Figure C.1. The true autoregressive parameter values and estimates
from two MCMC schemes, one for R = 1 and the other for R = 2, are given in Table C.1.
The mixing functions for the MCMC scheme where R = 2 are presented in Figure C.2.
Table C.1 shows that the parameter estimates of the one-component mixture are almost
identical to the parameter estimates of the first component of the two-component mixture.
The parameter estimates of the second component of the two-component mixture are very
different. The ¢’s are not significantly different from zero, while the extremely large value
of 02 of the second component suggests that the purpose of the second component is to
increase the noise of the model. However, the weight attached to the second component
is very small, except at the boundary of the data where this weight increases to 0.2. This
low weight means that the spectral density estimates from the two MCMC schemes, which
appear in Figure C.3, are almost identical; only in the last segment is there any discernible

difference, and this difference is very small.

Figure C.4 shows the posterior distribution of the number of lags when R = 1 (panel (a))

and R = 2 (panel (b)), along with the posterior distribution of the number of components

(panel (c)).
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Figure C.1: Data generated from an AR(10) model with complex roots. The values of the
autoregressive coefficients are given in Table C.1.

Parameter | True Value | Posterior Mean with R = 1 | Posterior Mean with R = 2
J=1 J=1 J=2

oo 0.00 -0.04 -0.04 -0.53
R 2.15 2.16 2.15 -0.19
103 -5.27 -5.31 -5.31 -0.51
O3 6.95 7.04 7.03 -0.14
o -9.64 -9.84 -9.83 -0.33
o5 8.85 9.06 9.05 -0.25
O -8.45 -8.72 -8.71 -0.56
fozs 5.30 5.48 5.47 1.40
Os -3.50 -3.65 -3.65 -1.59
O 1.22 1.28 1.28 1.29
D10 -0.51 -0.54 -0.54 -0.39
o? 1.00 1.023 1.023 118.21

Table C.1: Posterior means of the parameters from two MCMC schemes, one where the
maximum number of components, R = 1 and the other for R = 2.
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Figure C.2: Plot of the mixing functions for a mixture of two components.
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Figure C.3: Plot of the log spectral densities for R = 1 (blue) and R = 2 (red).
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Figure C.4: Posterior distributions: (a) Pr(p|Y,R = 1), (b) Pr(p|Y,R = 2) and (c)
Pr(r|lY,R = 2).



