
Conditional Spectral Analysis of Replicated Multiple
Time Series with Application to Nocturnal Physiology

Robert T. Krafty, Ori Rosen, David S. Stoffer,
Daniel J. Buysse, and Martica H. Hall ∗

December 29, 2016

∗R. T. Krafty is Associate Professor, Department of Biostatistics, D. S. Stoffer is Professor, Department
of Statistics, and D. J. Buysse and M. H. Hall are Professors, Department of Psychiatry, University of Pitts-
burgh (rkrafty@pitt.edu, stoffer@pitt.edu, buyssedj@upmc.edu, hallmh@upmc.edu). O. Rosen is Professor,
Department of Mathematical Sciences, University of Texas at El Paso (ori@math.utep.edu). This work
was supported by NIH grants R01GM113243, P01AG020677, R01HL104607, G12MD007592 and RR024153,
NSF grants DMS1506882, 2G12MD007592 and DMS1512188, and NSA grant H98230-12-1-0246. The au-
thors thank the Editor, Associate Editor and two referees for comments and insights that greatly improved
the manuscript.

1



Abstract

This article considers the problem of analyzing associations between power spectra of multi-

ple time series and cross-sectional outcomes when data are observed from multiple subjects.

The motivating application comes from sleep medicine, where researchers are able to non-

invasively record physiological time series signals during sleep. The frequency patterns of

these signals, which can be quantified through the power spectrum, contain interpretable

information about biological processes. An important problem in sleep research is drawing

connections between power spectra of time series signals and clinical characteristics; these

connections are key to understanding biological pathways through which sleep affects, and

can be treated to improve, health. Such analyses are challenging as they must overcome the

complicated structure of a power spectrum from multiple time series as a complex positive-

definite matrix-valued function. This article proposes a new approach to such analyses based

on a tensor-product spline model of Cholesky components of outcome-dependent power spec-

tra. The approach flexibly models power spectra as nonparametric functions of frequency

and outcome while preserving geometric constraints. Formulated in a fully Bayesian frame-

work, a Whittle likelihood based Markov chain Monte Carlo (MCMC) algorithm is developed

for automated model fitting and for conducting inference on associations between outcomes

and spectral measures. The method is used to analyze data from a study of sleep in older

adults and uncovers new insights into how stress and arousal are connected to the amount

of time one spends in bed. Supplementary material for this article are available online.

KEY WORDS: Bayesian Analysis; Coherence; Heart Rate Variability; MCMC; Multivariate

Time Series; Sleep; Smoothing Spline; Spectral Analysis; Tensor-Product ANOVA; Whittle

Likelihood.

1 Introduction

Innovations in data collection and storage have led to an increase in the number of biomedical

studies that record multiple time series signals and outcome measures in multiple subjects.
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For many time series, including common signals such as blood pressure, heart rate and

electroencephalography (EEG), frequency patterns that are quantified through the power

spectrum contain important information about biological processes. Consequently, studies

whose goals are to understand how underlying biological mechanisms are connected to be-

havioral and clinical outcomes often require an analysis of associations between outcomes

and power spectra of multiple time series.

Our motivating application comes from a sleep study whose goal is to better understand

the pathways that connect sleep to health and functioning. In the study, heart rate vari-

ability (HRV) is recorded in subjects during a night of sleep. HRV is measured through the

series of elapsed times between consecutive heart beats, and its power spectrum provides

indirect measures of psychological stress and physiological arousal (Hall et al., 2007). Upon

awakening, subjects reported subjectively assessed sleep outcomes, such as the amount of

time slept during the night, which are associated with many aspects of well-being (Buysse,

2014). Understanding the association between the power spectrum of HRV during different

sleep periods (i.e. beginning, middle and end of the night) and self-reported sleep outcomes is

essential to understanding how stress connects sleep to health and, consequently, for guiding

the use of treatments of poor sleep.

In the biomedical literature, a two-stage approach is typically used to analyze such data.

In the first stage, power collapsed within pre-selected frequency bands is estimated individu-

ally for each time series (Malik et al., 1996; Hall et al., 2004). A power spectrum is a function

of frequency; power collapsed within a frequency band is an integral of the power spectrum

over a range of frequencies, which converts the functional parameter into a scalar measure.

In the second stage, classical statistical methods, such as ANOVA and linear regression, are

used to evaluate associations between these band-collapsed spectral measures and outcomes.

Such an approach has three major drawbacks. First, it is highly dependent on the frequency-

band collapsed measures selected and there exists a hot debate as to which measures should

be considered and/or how they should be interpreted (Burr, 2007). Ideally, an analysis of

such data should provide global measures that can be used to understand the entire system
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while also providing a means to conduct inference on any frequency band-collapsed measure

of potential interest. Second, estimated power is treated as if it were not an estimate but the

true unknown parameter, leading to inaccurate inference. Finally, band-specific frequency

measures are estimated for each time series separately, inhibiting the evaluation of patterns

across series. For instance, in our motivating example, this two-stage approach does not

examine how the coherence in HRV between the beginning and end of the night is connected

to sleep outcomes.

In the statistics literature, a considerable amount of research has been conducted on

methods for analyzing functional variables, a thorough review of which is given by Wang

et al. (2016). Included in this body of work are methods for analyzing associations between

power spectra and outcomes when one time series is observed per subject (Stoffer et al.,

2010; Krafty and Hall, 2013). When one observes multiple time series per subject and

interest lies in frequency patterns both within each series and across different series, the

problem becomes considerably more challenging. This is the case in our motivating study,

where we are interested not only in stress and arousal during particular periods of sleep, but

also in their persistence and coherence across periods. While the power spectrum from a

single time series is a positive real-valued function of frequency, the power spectrum from

multiple time series is a positive-definite Hermitian matrix valued function of frequency. An

analysis of associations between power spectra from multiple time series and study outcomes

must be able to flexibly model associations while preserving this positive-definite Hermitian

structure.

Efficient nonparametric methods that preserve the positive-definite Hermitian structure

of spectral matrices have been developed for the simpler, classical problem of estimating the

power spectrum of a multivariate time series from a single subject by modeling Cholesky

components of spectral matrices as functions of frequency (Dai and Guo, 2004; Rosen and

Stoffer, 2007; Krafty and Collinge, 2013). In this article, we extend this framework to develop

a new approach to analyzing data from multiple subjects that models Cholesky components

as functions of both frequency and outcome. Rather than being curves as functions of
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frequency, components of spectral matrices under the proposed model are surfaces. Changes

in these surfaces with respect to the outcome provide nonparametric measures of association

between outcomes and power spectra. The proposed method is formulated in a fully Bayesian

framework; a MCMC algorithm based on the Whittle likelihood, or the asymptotic likelihood

derived from the Fourier transform of the data, is developed for model fitting and inference.

The method allows one to evaluate the entire outcome-dependent power spectrum and to

conduct nonparametric inference on the association between the outcome and any function

of the power spectrum.

The rest of the article is organized as follows. Our motivating application, the AgeWise

Sleep Study, is discussed in Section 2. A review of spectral analysis in the classical setting,

where data are observed from a single subject, is given in Section 3. The proposed methodol-

ogy for analyzing time series from multiple subjects is presented in Section 4. The proposed

method is used to analyze data from the motivating application in Section 5 and some final

remarks are offered in Section 6.

2 The AgeWise Sleep Study

An estimated 43% of older adults report problems initiating or maintaining sleep (Foley

et al., 1995). Poor sleep in older adults has been linked to depression, heart disease, obesity,

arthritis, diabetes and stroke (Foley et al., 2004). With medical and scientific advances

leading to an increase in the world’s elderly population, the consequences of poor sleep

in older adults pose a major public health concern. The AgeWise study is a NIH-funded

Program Project conducted at the University of Pittsburgh that seeks a better understanding

of causes, effects, and treatments of poor sleep in older adults. Towards this goal, we consider

N = 108 men and women between 69–89 years of age who were observed during a night of

in-home sleep. Two types of data were collected in each subject. First, subjects were

observed during the night through ambulatory polysomnography (PSG), or the continuous

collection of electrophysiological changes that occur during sleep. Second, upon awakening,

subjects completed the Pittsburgh Sleep Diary (Monk et al., 1994) to record self-reported
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sleep outcomes during the night.

As previously discussed, HRV is the series of elapsed times between heart beats. It is

of interest to researchers, as it reflects neurological control of the heart, and through this

capacity, its power spectrum provides indirect measures of stress reactivity and arousal. The

PSG used in the study included an electrocardiograph (ECG) to monitor heart activity. The

ECG was used to locate the timing of heart beats, which were then differenced, detrended,

cubic spline interpolated, and resampled at 1 Hz to compute HRV series throughout the

night.

During the night, the body cycles through two types of sleep: rapid eye movement

(REM) and non-rapid eye movement (NREM) sleep. In NREM sleep, which contains deep-

sleep, the parasympathetic branch of the autonomic nervous system that is responsible for

unconscious actions and stimulates the body to “rest-and-digest” dominates the sympathetic

branch, which drives the “flight-or-fight” response. Parasympathetic nervous system activity

during NREM is hypothesized to be responsible for many of the rejuvenating properties of

sleep (Siegel, 2005). However, physiological activity during NREM sleep is not constant; in

good sleepers, the amount of parasympathetic activity during NREM increases throughout

the night (Hall et al., 2004). To enable an analysis that can evaluate autonomic nervous

system activity and its changes during the night, we consider 3 HRV time series per subject

(at the beginning, middle, and end of the night) by extracting the first 5 minutes of HRV

from the first three periods of NREM sleep. Data from two subjects are displayed in Figure

1.

The goal of our analysis is to understand how the power spectrum of HRV over the

three periods of NREM are connected to self-reported sleep. We focus on one particular

self-reported sleep measure derived from the Pittsburgh Sleep Diary: time in bed (TIB).

TIB is defined as the elapsed time between attempted sleep and final wakening. It serves

as an upper bound for the amount of time spent asleep during the night, which has been

linked to heart disease, hypertension, impaired neurobehavioral performance and mortality

(Buysse, 2014). The reported TIB from our sample has a mean of 477.99 minutes and a
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Figure 1: Detrended HRV time series during the first three periods of NREM from two
subjects. Subject 1 reported a TIB of 357.67 minutes and subject 2 reported a TIB of
521.00 minutes.

standard deviation of 71.32 minutes. The resulting data for analysis consist of three epochs

of HRV, one during each of the first three periods of NREM sleep, and self-reported TIB

from each subject.

3 Methodological Background: Spectral Domain Anal-

ysis

Before introducing our proposed model for the spectral analysis of multiple time series from

multiple subjects in Section 4, in this section we present background on spectral analysis in

the classical setting, where data are observed from a single subject, for both univariate and

multivariate time series.
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3.1 Univariate Time Series

3.1.1 Population Parameters

Spectral domain analysis focuses on the cyclic behavior of time series data. An alternate

approach is time domain analysis wherein the relationship between the data at different time

lags is the focus. For stationary time series, the main time domain tool is the covariance

between a current value of the series, say Xt, and the value of the series h time units prior,

say Xt−h. The autocovariance is a function of lag, and is given by

γ(h) = Cov(Xt, Xt−h), h = 0,±1,±2, . . . .

If γ(h) is absolutely summable (which it is for ARMA models, for example), then there is a

duality between the power spectrum, given by

f(ω) =
∞∑

h=−∞

γ(h) exp (−2πiωh) , ω ∈ R,

and the autocovariance function, namely,

γ(h) =

∫ 1/2

−1/2
f(ω) exp (2πiωh) dω, h = 0,±1,±2, . . . , (1)

as the inverse transform of the power spectrum. The relationship is the same as that of a

characteristic function and a probability density. Consequently, the information contained

in the power spectrum is equivalent to the information contained in the autocovariance

function. If we are concerned with lagged behavior, working with γ(h) is more informative;

if we are concerned with cyclic behavior, as is the case of HRV where cyclical behavior

provides interpretable physiological information, working with f(ω) is more informative.

The power spectrum is nonnegative and we assume that it is positive, so that f(ω) > 0

for all ω. In addition to being positive, f has two other restrictions as a function of frequency.

By the nature of the Fourier transform, it is periodic such that f(ω) = f(ω + 2π), and it

is a Hermitian function, or an even function, where f(ω) = f(−ω). Consequently, f(ω) is

usually displayed only for ω ∈ [0, 1/2].

8



Putting h = 0 in (1) yields

γ(0) = Var(Xt) =

∫ 1/2

−1/2
f(ω) dω ,

which expresses the total variance of the time series as the integrated power spectrum. In

particular, we may think of f(ω) dω as the approximate variance in the data attributed to

frequencies in a small band of width dω around ω. It is common to view spectral analysis

as an analysis of variance (ANOVA) of time series data with respect to frequency. In fact,

the power spectrum is a density of variance rather than of probability.

3.1.2 Estimation

The nonparametric estimation of f from an epoch of length n, X1, . . . , Xn, can begin by

considering the discrete Fourier transform (DFT)

Ym = n−1/2
n∑
t=1

Xt exp(−2πiωmt),

where ωm = m/n are the Fourier frequencies. When n is large, Ym are approximately

independent mean-zero complex normal random variables with variances f(ωm) for m =

1, . . . ,M , M = b(n − 1)/2c, and Ym = Y n−m (Shumway and Stoffer, 2011, Appendix C).

Consequently, the periodogram |Ym|2 provides approximately unbiased but noisy estimates

of f(ωm). Consistent estimates can be obtained by smoothing the periodogram across fre-

quency using tools such as local averaging (Shumway and Stoffer, 2011, Chapter 4.5), splines

(Pawitan and O’Sullivan, 1994), and wavelets (Moulin, 1994).

Our estimation approach for multiple time series from multiple subjects, which we develop

in Section 4, is based on Bayesian splines. To motivate the development of the new method-

ology, in this subsection we discuss first a Bayesian smoothing spline model for univariate

spectral analysis, then discuss a low-rank approximation. Smoothing spline estimation bal-

ances the fit of a function to observed data with a roughness-based measure of regularity.

The Bayesian formulation of smoothing splines was first discussed in the case of Gaussian

observations by Kimeldorf and Wahba (1970) and Wahba (1978). Under the Bayesian for-

mulation, the likelihood provides a measure of fit to observed data, and regularity is imposed
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through a mean-zero Gaussian prior on the functional parameter, which induces a prior for

the roughness of the function.

For spectrum estimation, the large sample distribution of Ym provides the Whittle like-

lihood (Whittle, 1953, 1954)

L(Y | f) ≈
M∏
m=1

f−1(ωm) exp
{
−f−1(ωm) |Ym|2

}
.

We adopt generic notation throughout this article where Y will denote all DFT data. Since

f is a positive function, log f is modeled rather than f itself to avoid constraints. Although

general measures of regularity can be considered, we focus on measuring the roughness of a

function through its integrated squared second derivative,

P (log f) =

∫ 1/2

0

{
[log f ]′′ (ω)

}2
dω.

The specification of the prior distribution begins by decomposing log f into a linear part

(which is in the null space of P) and a nonlinear part. To define the prior distribution for

the nonlinear part, consider the reproducing kernel of the seminorm defined by P

J(ωi, ωj) =

∫ 1/2

0

(ωi − ν)+ (ωj − ν)+ dν,

where (ν)+ = max (ν, 0) (Gu, 2013, Section 2.3.1). For the Bayesian smoothing spline model,

the prior distribution for the log-spectrum can be formulated as

log f (ω) = a1 + a2ω +
M∑
j=1

J(ω, ωj)zj

where zzz = (z1, . . . , zM)′ ∼ N(000, τ 2J−1) is independent of aaa = (a1, a1)
′ ∼ N(0, σ2

αI2), J =

{J(ωi, ωj)} is the M ×M matrix of J evaluated at the Fourier frequencies and I2 is the 2×2

identity matrix. The reproducing property of the kernel J provides a simple form for the

roughness of the log-spectrum, P (log f) = zzz′Jzzz (Gu, 2013, Chapter 2), from which it can

be seen that the prior distribution on the coefficients zzz induces a prior on the roughness of

the spectrum where P (log f) ∼ τ 2χ2
M , and χ2

M denotes a chi-squared random variable on

M degrees of freedom. The smoothing parameter τ 2 > 0 balances the smoothness of the
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estimator to its fit to the data such that, conditional on τ 2, the Bayes estimate (posterior

median) approaches a linear function as τ 2 → 0 and interpolates |Ym|2 as τ 2 →∞.

Two approaches may be taken for estimation and inference under the Bayesian model:

empirical Bayes and fully Bayes. In the empirical Bayes approach, a data driven method, such

as generalized cross-validation (GCV) or generalized maximum likelihood (GML), is used to

select the smoothing parameter τ 2. The log-spectrum is then estimated from the posterior

distribution conditional on τ 2, and its median is equivalent to the frequentist smoothing

spline obtained by minimizing a penalized Whittle likelihood as σ2
α → ∞ (Gu, 1992; Qin

and Wang, 2008). In the fully Bayesian approach, τ 2 is treated as a random variable with

a noninformative prior, and inference is conducted averaged over the posterior distribution

of τ 2 (Speckman and Sun, 2003; Crainiceanu et al., 2005). Our proposed methodology will

adopt the later approach, as discussed in Section 4.

The presented smoothing spline model contains a large number of coefficients, which

can impede computation and limit practicality. Low rank approximations, such as those

obtained by using a subset of the kernel functions J(·, ωj) (Gu and Kim, 2002) or another

set of basis functions contained in the column space of J (Wood, 2006), can be used to

ease computational burden without sacrificing model fit. Here, we consider the basis formed

from the scaled eigenvectors of J , which has been used for power spectrum estimation by

Wood et al. (2002), Rosen et al. (2009) and Rosen et al. (2012). This basis can model

smooth functions with a relatively few number of basis functions, provides a diagonal prior

covariance structure that aids computation, and maintains the intuitive interpretation of the

prior distribution regularizing roughness as measured through P (Nychka and Cummins,

1996). To formulate this low-rank approximation, we first consider an equivalent formulation

of the Bayesian smoothing spline model for log f at the Fourier frequencies. Let log fff =

[log f(ω1), . . . , log f(ωM)]′ be the log-spectrum evaluated at the Fourier frequencies. Further,

let J = VJDJV
′
J be the spectral decomposition of J , QJ = VJD

1/2
J and ccc = D

1/2
J V ′Jzzz. Then

an equivalent model at the Fourier frequencies is

log fff = LJaaa+QJccc,
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where LJ =
(

111M 99
9ωωω

)
, 111M is the M -vector of ones, ωωω = (ω1, . . . , ωM)′, and ccc ∼ N(000, τ 2IM).

The eigenvectors contained in the columns of VJ are in increasing order of roughness

and the eigenvalues contained in the diagonal matrix DJ decay rapidly (Eubank, 1999).

Smooth functions can be accurately modeled through the first several nJ < M to provide

a low-rank approximation. With a slight abuse of notation to avoid the need to introduce

further variables, we let QJ represent the M × nJ matrix of the first nJ eigenvectors with

corresponding coefficients ccc ∼ N (000, τ 2InJ
).

The selection of nJ provides a compromise between low-rank computational feasibility

and loss of flexibility relative to full M -rank model. An intuitive measure of the loss of

flexibility is the fraction of the total variance of the covariance matrix J explained by its

first nJ eigenvectors (FVE), or the sum of its first nJ eigenvalues divided by the total sum

of all of its M eigenvalues. Wood et al. (2002), Rosen et al. (2009) and Rosen et al. (2012)

suggest using nJ = 10 basis functions, which, in each of their settings considered, equates

to an FVE of 97.975%. Our empirical findings support this suggestion, and we recommend

selecting nJ to achieve a 97.975% FVE. Under this rule, nJ = 7 for n = [15, 18], nJ = 8 for

n = [19, 22], nJ = 9 for n ∈ [23, 40] and nJ = 10 for n ∈ [41, 104].

3.2 Multivariate Time Series

3.2.1 Population Parameters

The ideas presented in the univariate case generalize to the multivariate case wherein we

observe a P -dimensional vector-valued time series, say {XXX t}. Under stationarity, the auto-

covariance function is a P × P matrix given by

Γ(h) = Cov(XXX t,XXX t−h), h = 0,±1,±2, . . . .

If
∑

h ||Γ(h)|| <∞, the spectral density matrix of the series XXX t is given by

f(ω) =
∞∑

h=−∞

Γ(h) exp (−2πiωh) , ω ∈ R
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and the inverse relationship is

Γ(h) =

∫ 1/2

−1/2
f(ω) exp (2πiωh) dω, h = 0,±1,±2, . . . .

For each ω ∈ R, f(ω) is a P × P non-negative definite Hermitian matrix with the diagonal

elements, fpp(ω) for p = 1, . . . , P , being the spectra of the individual components, and the

off-diagonal elements, fqp(ω) for q 6= p = 1, . . . , P , being the cross-spectra. Throughout this

article, we assume that f(ω) is non-singular for all ω ∈ R. As in the univariate case, f is a

periodic and Hermitian function of frequency were, for matrix-valued functions, Hermitian

as a function of frequency is defined as f(ω) = f ∗(−ω), and f ∗(ω) is the complex conjugate

of f(ω).

An important example of the application of the cross-spectrum is to the problem of

linearly predicting one of the component series, say Xqt, from another component, say Xpt.

A measure of the strength of such a relationship is the squared coherence function defined

as

ρ2qp(ω) =
|fqp(ω)|2

fqq(ω)fpp(ω)
.

This is analogous to conventional squared correlation between two finite-variance random

variables; e.g., 0 ≤ ρ2qp(ω) ≤ 1. This analogy motivates the interpretation of squared coher-

ence as the squared correlation between two time series at frequency ω. These ideas extend

in an obvious way to the concept of multiple coherence and partial coherence functions ob-

tained from the full spectral matrix in much the same way that multiple correlation and

partial correlation can be obtained from a covariance matrix. Full details of these results

may be found in Shumway and Stoffer (2011, Chapters 4 & 7).

3.2.2 Estimation

In the multivariate setting, let

YYY m = n−1/2
n∑
t=1

XXX t exp(−2πiωmt)
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be the DFTs of the data. In this case, the Whittle likelihood is

L(Y | f) ≈
M∏
m=1

∣∣f−1(ωm)
∣∣ exp

{
−YYY ∗mf−1(ωm)YYY m

}
,

and the periodogram YYY mYYY
∗
m is an approximately unbiased but noisy estimate of f(ωm), from

which consistent estimates can be obtained by smoothing.

While in the univariate setting the spectrum is smoothed on the logarithmic scale to

preserve positivity, Cholesky components of spectral matrices can be smoothed to preserve

positive-definiteness in the multivariate setting (Dai and Guo, 2004; Rosen and Stoffer, 2007;

Krafty and Collinge, 2013). The modified Cholesky decomposition assures that, for a spectral

matrix f(ω), there exists a unique P × P lower triangular complex matrix Θ(ω) with ones

on the diagonal and a unique P × P positive diagonal matrix Ψ(ω) such that

f−1(ω) = Θ(ω)Ψ−1(ω)Θ∗(ω).

There are P 2–Cholesky components to estimate: <{Θk`} and ={Θk`} for k > ` = 1, . . . , P−

1, and Ψ−1kk for k = 1, . . . , P . Since the diagonal terms Ψ−1kk (ω) > 0, we model log Ψ−1kk . Letting

θθθk` = [Θk`(ω1), . . . ,Θk`(ωM)]′ and logψψψ−1kk =
[
log Ψ−1kk (ω1), . . . , log Ψ−1kk (ωM)

]′
, we model:

<{θθθk`} = LJaaark` +QJcccrk`, k > ` = 1, . . . , P − 1 (2)

={θθθk`} = LJaaaik` +QJcccik`, k > ` = 1, . . . , P − 1 (3)

logψψψ−1kk = LJaaadkk +QJcccdkk, k = 1, . . . , P, (4)

where cccrk` ∼ N(000, τ 2rk`In), cccik` ∼ N(000, τ 2ik`In), cccdkk ∼ N(000, τ 2dkkIn), aaark` ∼ N(000, σ2
αI2), aaaik` ∼

N(000, σ2
αI2) and aaadkk ∼ N(000, σ2

αI2). Throughout this article, r, i and d are used to denote

coefficients for real components of Θ, imaginary components of Θ and the logarithm of the

diagonal components of Ψ−1, respectively.

4 Methodology: Replicated Multiple Time Series

The primary question considered in this article is how to assess the association between the

power spectrum of P -variate time series of length n, {XXXj1, . . . ,XXXjn}, and real-valued static
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variables, Uj, observed from j = 1, . . . , N independent subjects. In the motivating study,

there are N = 108 participants, Uj is self-reported TIB, and XXXjt are time series of HRV

during the first P = 3 periods of NREM. To address this question, we first introduce a

new measure in Section 4.1, the conditional power spectrum, which quantifies associations

between power spectra and outcomes. Then, in Section 4.2, we develop a tensor product

model for the conditional power spectrum that extends the Bayesian spline model of Cholesky

components of a single multivariate time series to account for dependence on both frequency

and outcome.

As previously mentioned, there are two approaches to conducting a Bayesian analy-

sis with splines: empirical Bayes and fully Bayesian. Each approach has strengths and

weaknesses. In the empirical Bayes approach, smoothing parameters are estimated through

a data-driven procedure. Estimates conditional on smoothing parameters can be quickly

computed through Fisher’s scoring or Newton-Raphson and conditional inference on the

modeled functions (Cholesky components in our setting) can be conducted through approxi-

mate “Bayesian confidence intervals” (Gu, 1992). In the fully Bayesian approach, smoothing

parameters τ 2 are treated as random variables with noninformative priors and MCMC tech-

niques are used to sample from the joint distribution of coefficients and smoothing parameters

(Speckman and Sun, 2003; Crainiceanu et al., 2005). The sample simulated from the pos-

terior distribution using MCMC provides a natural means of conducting inference on any

function of the spectrum averaged over the distribution of the smoothing parameters, which

accounts for uncertainty in the smoothing parameters when conducting inference. As will

be illustrated in Section 5, inference on squared coherence, univariate spectra, and integral

functions thereof (all of which are nonlinear functions of modeled Cholesky components) are

of direct scientific interest. We develop the proposed methodology under a fully Bayesian

framework, presenting prior distributions in Section 4.3 and the sampling scheme in Section

4.4.
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4.1 Conditional Power Spectrum

Without loss of generality, we formulate the methodology assuming that Ui is scaled to take

values within [0, 1]. To quantify the association between the power spectrum of the time

series XXXjt and the outcome Uj, we define the conditional power spectrum

f(ω, u) =
∞∑

h=−∞

Cov (XXXjt,XXXj,t+h | Uj = u) e−2πiωh, ω ∈ R, u ∈ [0, 1].

As with the power spectrum of a single multivariate time series, the spectral matrices f(ω, u)

are positive-definite P × P Hermitian matrices, and f(·, u) is a periodic and Hermitian

function of frequency for fixed u. In a traditional spectral analysis without a cross-sectional

variable, spectral measures such as fpq and ρ2pq = |fpq|2 / (fppfqq) are curves as functions of

frequency. In the conditional setting, these are surfaces as functions of both frequency and

the variable u. How these functions change with respect to u provides information as to how

spectral measures are associated with the variable.

4.2 Bayesian Tensor-Product Model of Cholesky Components

As in the classical setting discussed in Section 3.2.2, where a multivariate time series observed

from a single subject, to preserve positive definiteness, we model the Cholesky components.

Let

f−1(ω, u) = Θ(ω, u)Ψ−1(ω, u)Θ∗(ω, u),

be the modified Cholesky decomposition of the conditional power spectrum. We use Bayesian

tensor product models for the P 2–unique Cholesky components, which decompose the bi-

variate functions into products of univariate functions of ω and of u.

Bayesian models for Cholesky components as functions of ω were discussed in Section

3.2.2. Similarly, a low-rank approximate Bayesian smoothing spline model for a function of

outcomes at the observed values can be formulated. Since the domain of the outcome values

is [0, 1], as opposed the domain of the frequency values [0, 1/2], we consider the kernel

H(ui, uj) =

∫ 1

0

(ui − v)+ (uj − v)+ dv.
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Letting uuu = (u1, . . . , uN)′, a low-rank model for functions of the outcome evaluated at the

observed values is:

LHaaa+QHbbb, (5)

where LH =
(

111N 99
9uuu

)
, QH is the N × nH matrix of the first nH columns of VHD

1/2
H , H =

VHD
1/2
H V ′H is the spectral decomposition of the N × N matrix H = {H(ui, uj)}, and aaa ∼

N(000, σ2
αI2) is independent of bbb ∼ N(000, τ 2InH

).

To write the tensor-product model at the observed frequency-outcome points, concatenate

components across frequency and outcome to define the NM -vectors

θθθk` = [{Θk`(ω1, u1), . . . ,Θk`(ωM , u1)} , . . . , {Θk`(ω1, uN), . . . ,Θk`(ωM , uN)}]′

for k > ` = 1, . . . , P − 1. Similarly define logψψψ−1kk for k = 1, . . . , P . The real and imaginary

parts of θθθk`, and logψψψ−1kk can then be expressed as tensor products of the spline models for

functions of frequency (given in Equations (2) - (4)) and outcome (given in Equation (5))

<
{
θθθk`
}

= {LH ⊗ LJ}aaark` + {QH ⊗ LJ} bbbrk` + {LH ⊗QJ} cccrk` +
{
QH ⊗QJ

}
dddrk`

=
{
θθθk`
}

= {LH ⊗ LJ}aaaik` + {QH ⊗ LJ} bbbik` + {LH ⊗QJ} cccik` +
{
QH ⊗QJ

}
dddik`

logψψψ−1kk = {LH ⊗ LJ}aaadkk + {QH ⊗ LJ} bbbdkk + {LH ⊗QJ} cccdkk +
{
QH ⊗QJ

}
ddddkk.

This model decomposes conditional Cholesky components into combinations of products of

univariate functions of frequency and univariate functions of outcome. The parameters aaa

are coefficients for functions that are products of linear functions of both ω and u, bbb are

coefficients for functions that are products of linear functions of ω and nonlinear functions

of u, ccc are coefficients for functions that are products of nonlinear functions of ω and linear

functions of u, and ddd are coefficients for functions that are products of nonlinear functions

of ω and of u.

4.3 Prior Distributions

We define two types of prior distributions: prior distributions on coefficients conditional on

smoothing parameters and prior distributions on smoothing parameters. The tensor product

model naturally enables the formulation of prior distributions that regularize its components
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as univariate functions of frequency and outcome. Letting ηηηrk` = (aaa′rk`, bbb
′
rk`, ccc

′
rk`, ddd

′
rk`)

′, ηηηik` =

(aaa′ik`, bbb
′
ik`, ccc

′
ik`, ddd

′
ik`)
′and ηηηdkk = (aaa′dkk, bbb

′
dkk, ccc

′
dkk, ddd

′
dkk)

′, conditional on smoothing parameters,

we assume the diagonal Gaussian smoothing priors

ηηηrk` ∼ N(000, Drk`) where Drk` = diag(σ2
α111′4, τ

2
βrk`111

′
2nH

, τ 2γrk`111
′
2nJ
, τ 2δrk`111

′
nH×nJ

),

ηηηik` ∼ N(000, Dik`) where Dik` = diag(σ2
α111′4, τ

2
βik`111

′
2nH

, τ 2γik`111
′
2nJ
, τ 2δik`111

′
nH×nJ

),

ηηηdkk ∼ N(000, Ddkk) where Ddkk = diag(σ2
α111′4, τ

2
βdkk111

′
2nH

, τ 2γdkk111
′
2nJ
, τ 2δdkk111

′
nH×nJ

)

where 111n is the n–vector of ones.

Prior distributions on the smoothing parameters are placed by assuming that τβrk`, τγrk`,

τδrk`, τβik`, τγik`, τδik`, k > ` = 1, . . . , P − 1, τβdkk, τγdkk, τδdkk, k = 1, . . . , P , are inde-

pendent Half-t(ν,G) random variables with pdf p(x) ∝ [1 + (x/G)2/ν)]−(ν+1)/2, x > 0,

where the hyperparameters ν and G are assumed known (Gelman, 2006). Computationally,

it is convenient to utilize the following scale mixture representation (Wand et al., 2012):

(τ 2 | g) ∼ IG(ν/2, ν/g), g ∼ IG(1/2, 1/G2), where IG(a, b), is the inverse Gamma dis-

tribution with pdf p(x) ∝ x−(a+1) exp(−b/x), x > 0. The larger the value of G, the less

informative the prior, and we set G to a large fixed value. We found analyses to be insen-

sitive to the choice of G, with G = 10 and G = 105 giving indistinguishable results in both

simulations and in the analysis of the AgeWise data. The hyperparmeter σ2
α, which is the

prior variance of the coefficients of the linear terms, is assumed to be a known large value.

In our computations, σ2
α = 102 and σ2

α = 107 gave indistinguishable results.

4.4 Whittle Likelihood, Sample Scheme and Inference

Given observed time series, we define the DFT for the jth subject at frequency ωm as

YYY jm = n−1/2
n∑
t=1

XXXjt exp(−2πiωmt).

For large n, conditional on uj, YYY jm are approximately independent mean-zero complex Gaus-

sian random variables. This provides the conditional Whittle likelihood

L(Y | f) ≈
N∏
j=1

M∏
m=1

∣∣f−1(ωm, uj)∣∣ exp
{
−YYY ∗jmf−1(ωm, uj)YYY jm

}
.
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There are P 2 [(nH + 2) (nJ + 2) + 3] parameters in the model of f : (nH + 2) (nJ + 2) re-

gression coefficients and 3 smoothing parameters for each of the P 2 Cholesky components.

We develop a sampling scheme to sample from the joint posterior distribution of the co-

efficients ηηη’s and smoothing parameters τ 2’s conditional on the DFT Y and the observed

outcomes uuu. To aid in developing this sampling scheme, it is advantageous to consider a

more compact notation by defining

Q =
(
LH ⊗ LJ 99

9 QH ⊗ LJ 99
9 LH ⊗QJ 99
9 QH ⊗QJ

)
so that

<
{
θθθk`
}

= Qηηηrk`, =
{
θθθk`
}

= Qηηηik` and logψψψ−1kk = Qηηηdkk.

Each iteration of the sampling scheme consists of three steps. First, the coefficients corre-

sponding to the real and imaginary components of Θ (ηηηrk` and ηηηik`) are sequentially sampled

as Gaussian random variables from their conditional posterior distributions conditional on

the current values of all other parameters. In the second step, the coefficients correspond-

ing to the diagonal elements of Ψ−1 (ηηηdkk) are drawn. The log of the conditional posterior

distribution of these coefficients is given by

log p
(
ηηηdkk | vvvk, Ddkk

) c
=

N∑
j=1

M∑
m=1

{
qqq′jmηηηdkk − exp(qqq′jmηηηdkk)vkjm

}
− 1

2
ηηη′dkkD

−1
dkkηηηdkk, (6)

where qqq′jm is the row of Q corresponding to the jth subject and mth frequency, vvvk is a vector

with components vkjm depending on Y and on other parameters held fixed (its exact form

is given in Appendix B), and
c
= denotes equality up to a constant. Since this is not a known

distribution, ηηηdkk are drawn in a Metropolis-Hastings step. The last step samples smoothing

parameters from their posterior distributions conditional on other parameters. For ease of

notation, in what follows we describe the sampling scheme for the case P = 3. Further

details are given in Appendix B of the online supplementary material. After initializing all

the parameters, the sth iteration, 1 ≤ s ≤ S, of the Gibbs sampler consists of the following

steps.

1. Sample the coefficients corresponding to Θ:
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(a) Draw

(ηηη
(s)
r21 | Y,ψψψ

−1(s−1)
11 , θθθ

(s−1)
31 , D

(s−1)
r21 ) ∼ N(µµµr21,Σr21)

(ηηη
(s)
i21 | Y,ψψψ

−1(s−1)
11 , θθθ

(s−1)
31 , D

(s−1)
i21 ) ∼ N(µµµi21,Σi21)

and update θθθ
(s)
21 = Qηηη

(s)
r21 + iQηηη

(s)
i21.

(b) Draw

(ηηη
(s)
r31 | Y,ψψψ

−1(s−1)
11 , θθθ

(s)
21 , D

(s−1)
r31 ) ∼ N(µµµr31,Σr31)

(ηηη
(s)
i31 | Y,ψψψ

−1(s−1)
11 , θθθ

(s)
21 , D

(s−1)
i31 ) ∼ N(µµµi31,Σi31)

and update θθθ
(s)
31 = Qηηη

(s)
r31 + iQηηη

(s)
i31.

(c) Draw

(ηηη
(s)
r32 | Y,ψψψ

−1(s−1)
22 , D

(s−1)
r32 ) ∼ N(µµµr32,Σr32)

(ηηη
(s)
i32 | Y,ψψψ

−1(s−1)
22 , D

(s−1)
i32 ) ∼ N(µµµi32,Σi32)

and update θθθ
(s)
32 = Qηηη

(s)
r32 + iQηηη

(s)
i32.

The exact forms of the conditional means and covariances, µck` and Σck`, c = r, i, are

given in Appendix B.

2. Sample coefficients corresponding to Ψ−1:

for k = 1, 2, 3 do

(a) Draw ηηη
(s)
dkk ∼ tν(η̂ηηdkk, Σ̂dkk), where η̂ηηdkk is the maximizer of (6) and Σ̂dkk is

the inverse of the observed information matrix at η̂ηηdkk.

(b) Compute

r(s) =
p
(
ηηη
(s)
dkk | vvvk, Ddkk

)
fT (ηηη

(s−1)
dkk )

p
(
ηηη
(s−1)
dkk | vvvk, Ddkk

)
fT (ηηη

(s)
dkk)

,

where fT is the density of the tν(η̂ηηdkk, Σ̂dkk) distribution.

(c) With probability min(1, r(s)) accept ηηη
(s)
dkk, otherwise ηηη

(s)
dkk = ηηη

(s−1)
dkk .

(d) Update ψψψ
−1(s)
kk = exp(Qηηη

(s)
dkk).

end

3. Sample smoothing parameters:
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for ` = 1, 2 do
for k = 2, 3 do

Draw

τ
2 (s)
βrkl ∼ IG((nb + ν)/2, bbb

′(s)
rkl bbb

(s)
rkl/2 + ν/g

(s−1)
βrkl )

τ
2 (s)
γrkl ∼ IG((nc + ν)/2, ccc

′(s)
rkl ccc

(s)
rkl/2 + ν/g

(s−1)
γrkl )

τ
2 (s)
δrkl ∼ IG((nd + ν)/2, ddd

′(s)
rklddd

(s)
rkl/2 + ν/g

(s−1)
δrkl )

g
(s)
βrkl ∼ IG((ν + 1)/2, ν/τ

2 (s)
βrkl + 1/G2)

g
(s)
γrkl ∼ IG((ν + 1)/2, ν/τ

2 (s)
γrkl + 1/G2)

g
(s)
δrkl ∼ IG((ν + 1)/2, ν/τ

2 (s)
δrkl + 1/G2).

end

end

The smoothing parameters for the imaginary and diagonal components are similarly

drawn from inverse gamma distributions.

Point Estimates and Credible Intervals

The sample generated via MCMC methods provides a means of obtaining point estimates

and credible intervals for any function of the spectrum averaged over the distribution of

smoothing parameters through the sample mean and percentiles of the empirical distribution

of the function evaluated at each iteration of the sampling algorithm. For instance, a measure

of interest in the analysis of HRV is the log-spectrum from the pth period of NREM, log fpp.

Consider

f (s)(ωm, uj) =
{

Θ(s)(ωm, uj)Ψ
−1 (s)(ωm, uj)Θ

∗ (s)(ωm, uj)
}−1

as the estimated spectral matrix at the sth iteration corresponding to uj and ωm with pth

diagonal element f
(s)
pp (ωm, uj). The matrix Θ(s)(ωm, uj) has k`th element

θ
(s)
k`jm = qqq′jmηηη

(s)
rk` + i qqq′jmηηη

(s)
ik`, k > ` = 1, . . . , P − 1,

and Ψ−1 (s)(ωm, uj) has kkth element exp
(
qqq′kkηηη

(s)
dkk

)
. If S iterations of the sampling algorithm

are run with a burn-in of S0, then an estimate of log fpp(ωm, u`) can be computed as the

mean of the values
{

log f
(s)
pp (ωm, u`) ; S0 ≤ s ≤ S

}
, and a 95% credible interval computed

as their 2.5 and 97.5 empirical percentiles.
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Scientific interest also lies in measures collapsed across frequency. For example, as will

be discussed in the following section, in the analysis of HRV, collapsed power within the

high-frequency band (HF) between 0.15-0.40 Hz

fHFp (u) =

∫ .40

.15

fpp(ω, u)dω (7)

provides a measure of autonomic nervous system activity during the pth NREM period

among people with a TIB of u. Letting f
HF (s)
p (u`) = W−1∑

.15≤ωm≤.40 f
(s)
pp (ωm, u`) where W

is the number of Fourier frequencies within the HF band, an estimate of fHFp (u`) is given by

the mean of the values
{
f
HF (s)
p (u`) ; S0 ≤ s ≤ S

}
, and a 95% credible interval is given by

their 2.5 and 97.5 empirical percentiles.

5 Application to the AgeWise Study

We used the proposed methodology to analyze the association between TIB and the power

spectrum of the first three periods of NREM from N = 108 AgeWise subjects, as described

in Section 2. The method was fit using nH = nJ = 10 basis functions, with hyperparameters

G = σ2
α = 105, and for S = 3000 iterations of the MCMC algorithm with a burn-in of

S0 = 500. Note that, in this example, there are a total of P 2 (nH + 2) (nJ + 2) = 1296

coefficients and 3P 2 = 27 smoothing parameters. The average run time per iteration was

5.46 seconds with a standard deviation of 0.24 seconds using the program that is available

on the journal’s website in Matlab 2016b and macOS Sierra v10.12.1 on a 2.9 GHz Intel

Core i7 processor with 16 GB RAM.

Although all desired analyses are obtained from one MCMC chain, to aid the biological

and clinical discussion of the results, we present the analysis in three stages. First, in Section

5.1 we examine the estimated period-specific spectra and squared coherences as frequency-

outcome surfaces. In the subsequent two stages, we explore power collapsed within certain

frequency bands as functions of TIB: first for power within periods in Section 5.2, then

for coherence between periods in Section 5.3. The results from these analyses provide new

insights into biological underpinnings of spending too little or too much time in bed. In
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particular, our analysis suggests that (i) short TIB is connected to elevated stress and arousal

within-periods of NREM towards the end of the night and (ii) long TIB is associated with

a persistence in arousal in the beginning of the night.

5.1 Analysis of the Conditional Spectrum

Point estimates of the within-period conditional log-spectral surfaces, log {fpp(ω, u)}, and of

the cross-period conditional logit squared coherence surfaces,

logit
{
ρ2pq(ω, u)

}
= log

[
ρ2pq(ω, u)/

{
1− ρ2pq(ω, u)

}]
,

are displayed in Figure 2. These estimates are plotted on the logarithmic and logistic scales,

respectively, to aid visualization. The conditional spectra at each of the first three periods of

NREM and the squared coherence between NREM 1 and 2 display different characteristics

within low frequencies that are less than 0.15 Hz compared to higher frequencies between

0.15–0.40 Hz.

From a biological perspective, these results are not surprising and produce interpretable

measures. As was discussed in Section 2, the autonomic nervous system is classically divided

into two branches: the parasympathetic branch that is responsible for activities related to

resting and digestion and the sympathetic branch that is responsible for the flight-or-fight

response. Researchers have shown that power within the high frequency band (HF) within

0.15-0.40 Hz provides a measure of parasympathetic nervous system activity and that power

within the low frequency band (LF) between 0.04-0.15 Hz is a measure of the combined

modulation of both the sympathetic and parasympathetic nervous systems. Consequently,

the ratio of power from low frequencies versus high frequencies (LF/HF) can be interpreted as

a measure of sympathetic modulation relative to parasympathetic modulation. Blunted HF

and elevated LF/HF power are often interpreted as indirect measures of physiological arousal

and psychological stress (Hall et al., 2004, 2007). To obtain inference on associations between

these measures and TIB, in the next two subsections we examine power and coherence

collapsed within these bands as functions of TIB.
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Figure 2: Estimated conditional log-spectra for each period of NREM (top panel) and esti-
mated logit of conditional coherence between each period (bottom panel).

5.2 Analysis of Within-Period Power

We consider two collapsed measures of within-period power. In addition to HF previously

defined in Equation (7), we also consider LF/HF as

fLF/HFp (u) =

{∫ .15

.04

fpp(ω, u)dω

}/{∫ .40

.15

fpp(ω, u)dω

}
.

Estimates and 95% pointwise credible intervals for these two measures as functions of TIB

are displayed in Figure 3 for each period.

HF power is relatively constant across TIB during NREM 1, while participants with a

TIB of less than 400 minutes have decreased HF power during NREM 2 and 3 compared

to those who spend more time in bed. Further, those who have an exceedingly small TIB

display increased LF/HF power during NREM sleep compared to those who spend more TIB,

especially during NREM 3. These characteristics are indicative of heightened physiological

arousal and psychological stress.
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Figure 3: Estimated conditional HF (top panel), f̂HFp , and LF/HF (bottom panel), f̂
LF/HF
p ,

as functions of TIB with 95% pointwise credible intervals for each period of NREM.

Sleeping less than 7 hours per night has been shown to be associated with a multitude

of negative health effects, including increased mortality (Buysse, 2014). The results of our

analysis provide a potential pathway through which short sleep, which is inherently bounded

by TIB, is connected to well-being: through increased stress and arousal towards the end of

the night.

5.3 Analysis of Cross-Period Coherence

To investigate connections between cross-period coherence and TIB, we consider conditional

HF band-squared coherence

ρ2, HFpq (u) =

∣∣∣∣∫ .40

.15

fpq(ω, u)dω

∣∣∣∣2/{
fHFp (u)fHFq (u)

}
and display estimates on the logit scale, logit

(
ρ2, HFpq

)
= log

[
ρ2, HFpq /

(
1− ρ2,HFpq

)]
, in the

top panel of Figure 4. To better understand how changes in TIB are associated with HF

coherence, we also examine first derivatives,

DHF
pq (u) = d

[
ρ2, HFpq (u)

]
/du,
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Figure 4: Estimated logit of integrated HF coherence (top panel), logit
(
ρ̂2, HFpq

)
, between

each NREM period as functions of TIB and their first derivatives (bottom panel), D̂HF
pq ,

with pointwise 95% credible intervals.

whose estimates are displayed in the bottom panel of Figure 4. We find that the derivative

of HF coherence between NREM 1 and 2 is positive for TIB greater than 500 minutes. This

indicates that excessive increases in the amount of time spent in bed are associated with

increased coherence in parasympathetic activity in the beginning of the night.

The relationship between excessive TIB and ill-health led Youngstedt and Kripke (2004)

to propose modest sleep restrictions to increase quality of life and survival, especially for

older adults, who tend to spend more time in bed as compared to younger adults. However,

these restrictions must be used with great care as they can potentially lead to negative

health effects (Reynolds III et al., 2010; Reynold et al., 2014). Our results demonstrate that

excessive TIB is associated with a coherence in parasympathetic activity in the beginning

of the night that is not present in moderate and short TIB. A possible explanation for this

relationship is that extensive TIB can cause an increase in the amount of time spent awake

while in bed, or lead to fragmented sleep. The roles of and relationships between physiological

activity during different sleep cycles could change as sleep becomes more fragmented. These

findings provide some of the first potential insights into the biological pathway through which

excessive TIB can be connected to negative health, which can potentially be used to inform
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optimal sleep restriction strategies in older adults.

6 Final Remarks

This article introduces a novel approach to analyzing associations between multiple time

series and cross-sectional outcomes when data are observed from multiple subjects. A new

measure of association, the conditional power spectrum, is introduced and its Cholesky

components are modeled as bivariate functions of frequency and cross-sectional outcome. A

MCMC algorithm is developed for model fitting allowing for inference on any function of the

power spectrum. The method was motivated by a sleep study and uncovered connections

between excessive time in bed and heightened arousal and stress that could not have been

uncovered through traditional methods.

We conclude this section by discussing three extensions to the proposed methodology.

First, the model is formulated to investigate the association between power spectra and a

single cross-sectional variable. The model could easily be extended through higher-order

tensor product models to include multiple variables, such as the amount of time it takes to

fall asleep and the number of awakenings during the night. However, such a model would

provide inference on the effect of these variables on the power spectrum conditional on

the other variables, complicating interpretation when these variables are highly correlated.

Future work will explore an interpretable canonical correlation type dimension reduction of

a collection of correlated variables and multivariate spectral matrices, which can be viewed

as a multivaraite extension of Krafty and Hall (2013). Second, our application focused on

HRV, due to the insights that it provides into autonomic nervous system activity. One could

also explore the spectral analysis of other PSG channels, as well as the simultaneous coupling

of channels. However, each channel of the PSG is sampled at a different rate. The second

extension will develop conditional spectral analysis of time series with different sampling

rates. Finally, since we were motivated by the analysis of HRV during epochs within NREM

that are approximately stationary, we focused on stationary time series. For more highly

sampled signals such as EEG, this assumption is not valid. A conditional time-frequency
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analysis for signals that are locally stationary will also be explored.

Supplementary Material

Supplementary material in the form of a pdf file and a zip file are available on the journal’s

website. The material in the pdf file contains two appendices: Appendix A provides results

from simulation studies and Appendix B contains details concerning the sampling scheme.

The a zip file contains a Matlab program for implementing the proposed procedure.
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