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ABSTRACT

In this paper we present a model for the analysis of multivariate functional data with

unequally spaced observation times that may differ among subjects. Our method is

formulated as a Bayesian mixed-effects model in which the fixed part corresponds to the

mean functions, and the random part corresponds to individual deviations from these

mean functions. Covariates can be incorporated into both the fixed and the random

effects. The random error term of the model is assumed to follow a multivariate

Ornstein-Uhlenbeck process. For each of the response variables, both the mean and

the subject-specific deviations are estimated via low-rank cubic splines using radial

basis functions. Inference is performed via Markov chain Monte Carlo methods.

1 Introduction

The term functional data analysis describes nonparametric analyses of longitudinal

data which focus on the curves themselves as the basic unit of data. Some of the goals



of functional data analysis include exploring individual variation of curves from an

overall mean function, and modeling the dependence of the curves on covariates. The

mean function, as well as the subject-specific functions are estimated nonparametri-

cally. In this paper we propose a method for analyzing multivariate functional data

with unequally spaced observation times that may differ among subjects. It is assumed

that all variables are observed at the same time points. Fitting a regression model with

a multivariate response may be done by either fitting a separate regression for each of

the response variables or by fitting a single regression with all response variables simul-

taneously. The latter may be advantageous if the error terms corresponding to each

variable are correlated. Thus, fewer observations may be required to obtain reliable

nonparametric function estimates compared to fitting each regression separately and

ignoring the correlation. This has been shown to be the case in seemingly unrelated

regression (see for example Smith and Kohn, 2000).

Our method is formulated as a Bayesian mixed-effects model in which the fixed part

corresponds to the mean functions, and the random part corresponds to individual

deviations from these mean functions. Covariates can be incorporated into both the

fixed and the random effects. The random error term of the model is assumed to follow

a first order continuous-time multivariate autoregression, also known as a multivariate

Ornstein-Uhlenbeck process. For each of the response variables, both the mean and the

subject-specific deviations are estimated via low-rank cubic splines using radial basis

functions. Inference is performed via Markov chain Monte Carlo methods.

Our model is closest in spirit to the functional mixed effects model of Guo (2002),

where the fixed and random effects are modeled by cubic smoothing splines. However,

Guo’s model accommodates only a univariate response variable, and does not allow

correlated error terms. It can be fit either via standard mixed effects software or by
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Kalman filtering. Inference and model selection are based on a generalized maximum

likelihood ratio test. Baladandayuthapani et al. (2008) have proposed a Bayesian

model for spatially correlated functional data analysis. The smoothing technique they

use is similar to ours, but their emphasis is on spatial correlation rather than on

temporal correlation. Smith and Kohn (2000) consider multivariate nonparametric

regression using the seemingly unrelated regression approach. They show that if the

error terms of the regression equations are correlated, better nonparametric estimates

of the regression functions are obtained by accounting for this correlation compared to

fitting separate regressions ignoring the correlation. It is noted that Smith and Kohn

(2000) consider multivariate nonparametric regression, not functional data analysis. In

functional data analysis, each individual subject has its own function which needs to

be estimated for each variable. Smith and Kohn (2000) only estimate a single function

for each variable.

The Ornstein-Uhlenbeck process has been used before in various contexts. Unlike most

diffusion processes, its transition density is available in closed form, which results in

a closed-form expression for the likelihood function. Jones (1993), Chapter 8, uses a

state-space approach to parameter estimation. Sy et al. (1997) present a model for

multivariate repeated measures which allows unequally spaced observations by using

the multivariate integrated Ornstein-Uhlenbeck process. The fixed and random effects

in their model have parametric forms. Markov chain Monte Carlo methods for inference

on the Ornstein-Uhlenbeck process (univariate or multivariate) parameters have also

been proposed. A recent review of estimation for discretely observed diffusion processes

is given in Beskos et al. (2006). Golightly and Wilkinson (2006) discuss Bayesian

inference for nonlinear multivariate diffusions. A number of authors have assumed a

common spacing between the observed times. Blackwell (2003) takes this common

spacing to be the most frequently occurring interval between observations. De la Cruz-
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Meśıa and Marshall (2003, 2006) discuss the univariate Ornstein-Uhlenbeck process and

take the common spacing to be the average time difference between two consecutive

observations.

The example for application of our methodology is taken from a recent psychiatric

study comparing psychotherapy to pharmacotherapy carried out at the University of

Pittsburgh and the University of Pisa, Italy (Frank, et al., 2008). This study sought

differential baseline predictors of response to these two forms of treatment of major

depression. Here, we examine the interaction effect of treatment group with Lifetime

Depressive Spectrum symptoms (LDS; Cassano et al, 1997) in 252 patients entering

the study in an acutely depressive episode. Levels of depression are determined by the

clinician-administered Hamilton Rating Scale for Depression (HRSD) and the Quick

Inventory for Depression Self-report (QIDS). These two scales were given to patients at

baseline and again roughly weekly over the course of each subject’s acutely depressive

episode.

Our main contribution in this paper is accommodating multivariate functional data

including covariates and accounting for correlation across variables and time using

smoothing techniques in combination with modeling the error term via the multivariate

Ornstein-Uhlenbeck process.

The rest of the paper is organized as follows. In Section 2, we describe our model, the

prior distributions and the sampling scheme. Section 3 provides results of a simulation

study. Section 4 discusses an application, and Section 5 ends with a brief discussion.
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2 The model, priors and sampling scheme

2.1 The model

Suppose yyyi(tij) is a p×1 vector of response variables on subject i at time tij, i = 1, . . . , n,

j = 1, . . . , mi, and consider the model

yyyi(tij) = Xijµµµ(tij) + Zijgggi(tij) + δδδi(tij) . (1)

In (1), µµµ(t) = (µµµ′
1(t), . . . , µµµ

′
p(t))

′ and gggi(t) = (ggg′i1(t), . . . , ggg
′
ip(t))

′, where

µµµk(t) = (µk1(t), . . . , µkr(t))
′ and gggik(t) = (gik1(t), . . . , giks(t))

′ are an r × 1 vector of

fixed functions, and an s× 1 vector of random functions, respectively, for k = 1, . . . , p.

Associated with µµµ(tij) is an r × 1 covariate vector xxxij, and with gggi(tij) – an s × 1

covariate vector zzzij, such that Xij = Ip ⊗ xxx′ij and Zij = Ip ⊗ zzz′ij, where Ip is a p × p

identity matrix, and ⊗ denotes the Kronecker product. We have assumed here that

the p response variables share the same covariates.

Before proceeding to specify the p × 1 vector of random errors, δδδi(tij), we give an

example which is a special case of model (1). Suppose p = 2, r = 2 and s = 1,

with xxxij taking values in {(1 0)′, (1 1)′}, and zzzij = 1 with corresponding functions

µµµ1(t) = (µ11(t), µ12(t))
′, µµµ2(t) = (µ21(t), µ22(t))

′, gi1(t) and gi2(t). In this case, model

(1) reduces to

yi1(tij) = µ11(tij) + xij2 · µ12(tij) + gi1(tij) + δi1(tij)

yi2(tij) = µ21(tij) + xij2 · µ22(tij) + gi2(tij) + δi2(tij) ,

where xij2, the second entry of xxxij, can take the values 0 or 1. In this example, there

are two groups of subjects – control (xij2 = 0) and treatment (xij2 = 1). Each group

has its own mean curve for each of the two variables, and individual deviations from

these curves are accommodated by the random functions gi1(t) and gi2(t), i = 1, . . . , n.
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The error term in model (1) is assumed to follow a multivariate Ornstein-Uhlenbeck

process. More specifically, δδδi(t) satisfies the stochastic differential equation

dδδδi(t) = −Aδδδi(t) +BdWWW i(t) ,

where A and B are p× p matrices of full rank common to all i = 1, . . . , n, and WWW i(t) is

the p-dimensional Wiener process. Three properties of the Ornstein-Uhlenbeck process

(Gardiner, 1983 , pp. 110–111) which will be useful in what follows are

1. The Ornstein-Uhlenbeck process will be stationary provided the eigenvalues of A

have positive real parts.

2. The solution Σ to the matrix equation AΣ+ΣA′ = BB′ is the stationary variance-

covariance matrix of the process.

3. In the stationary state, the covariance of δδδi(t) and δδδi(s), for s < t, is

Cov(δδδi(t), δδδi(s)) = exp{−A(t− s)}Σ . (2)

Let ∆tij = tij − ti,j−1 for j = 1, . . . , mi, where ti0 = 0. The transition density of the

Ornstein-Uhlenbeck process is given by

p(δδδi(tij)|δδδi(ti,j−1),∆tij) ∝ |Ω∆tij |−1/2 exp
{

−1

2
γγγ′tijΩ

−1
∆tij

γγγtij

}

, (3)

where γγγtij = δδδi(tij)−exp(−A∆tij)δδδi(ti,j−1) and Ω∆tij = Σ−exp(−A∆tij)Σ exp(−A′∆tij).

The functions µkl(t) and gikm(t), k = 1, . . . , p, l = 1, . . . , r, m = 1, . . . , s, i = 1, . . . , n

are modeled as cubic splines using low-rank radial basis functions (French et al., 2001,

Ruppert et al., 2003). In Section 2.2 we review briefly nonparametric function estima-

tion.
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2.2 Nonparametric function estimation

The functions µkl(t) and gikm(t) are estimated nonparametrically. In this section we

explain the basis function approach which is used in turn in Section 2.3 to estimate

these functions. For simplicity, we focus on scatterplot smoothing, with observations

(xi, yi), i = 1, . . . , n. The description in this section is based on French et al. (2001),

Ruppert et al. (2003) and Crainiceanu et al. (2005). Consider the model

yi = f(xi) + εi,

where E(εi) = 0, i = 1, . . . , n, and f is an unknown smooth function. A linear spline

basis function can be expressed as (x − κ)+ = max(0, x − κ), where κ is a knot.

Any linear combination of linear spline basis functions 1, x, (x − κ1)+, . . . , (x − κK)+

is a piecewise linear function with knots at κ1, . . . , κK. The function f may thus be

expressed as

f(x) = β0 + β1x+
K
∑

k=1

uk(x− κk)+, (4)

where the uks are the coefficients of the basis functions. We comment later in this

section on the value of K.

To understand how the spline model (4) can be used for fitting a nonparametric curve

to data, consider Figure 1, which displays in the top panel whip-shaped data similar to

the example in Ruppert et al. (2003). The left half of the data exhibits linear behavior

while curvature is apparent on the right-hand side. The bottom panel presents the

basis functions used in the spline model. In particular, the equally-spaced knots are

0.50, 0.55, 0.60, . . . , 0.95. Comparing the two panels of Figure 1, it is quite easy to see

that a linear combination of the basis functions in the bottom panel should be able to

capture the data structure in the top panel.

In general, any structure can be accommodated by placing basis functions at additional

7



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

x
y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

x

y

Figure 1: Top: data with fitted curve. Bottom: the basis functions

knots. To automate the process, two main approaches are commonly taken. One

approach is automatic knot selection which can be carried out via Bayesian variable

selection. Specifically, a large number of knots are placed at either equally spaced

locations or at specific percentiles of the covariate, and an indicator variable is attached

to each knot (see for example, Thompson and Rosen, 2008). The indicator value is 1 if

a knot is to be retained at a given location or 0 if the knot should be removed from that

location. In a Bayesian MCMC procedure, the indicator variables are sampled from

at each iteration. The other approach is to retain all the knots but to constrain their

influence. This can be accomplished by penalized spline regression or equivalently

by using a linear mixed effects model formulation. In this paper, we use the latter

approach in a Bayesian framework. In both approaches, the value of K is not crucial,

as long as it is not too small. Typically, 30–40 knots are sufficient for medium-sized
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datasets. Instead of the linear spline representation (4), we use in this paper the low

rank thin-plate spline representation

f(x) = β0 + β1x+
K
∑

k=1

uk|x− κk|3. (5)

Using cubic radial basis functions tends to result in a more aesthetically appealing fit,
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Figure 2: The data with a fitted curve. Left: truncated lines basis. Right: Cubic radial
basis functions.

compared to that of the truncated-line basis, and may lead to faster convergence of

the MCMC algorithm. The penalized spline approach prevents overfitting by adding a

roughness penalty. Specifically, the minimization criterion is

n
∑

i=1

(yi − f(xi))
2 +

1

λ
θθθ′Dθθθ, (6)

where θθθ = (β0, β1, u1, . . . , uK)′, λ is the smoothing parameter andD is a known positive-

definite penalty matrix. For thin-plate splines, the matrix D is given by

D =

(

02×2 02×K

0K×2 ΩK

)

,

where the (k, l)th element of ΩK is |κk − κl|3. From the structure of the matrix D

it is clear that only the uks are penalized. Let yyy = (y1, . . . , yn)
′, X = [1 xi]1≤i≤n,
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ZK = [|xi − κ1|3 . . . |xi − κK |3]1≤i≤n. Dividing (6) by σ2
ε and expressing the penalty

term explicitly as a function of ΩK results in

1

σ2
ε

||yyy −Xβββ − ZKuuu||2 +
1

λσ2
ε

uuu′ΩKuuu, (7)

where βββ = (β0, β1)
′ and uuu = (u1, . . . , uK)′ are considered fixed and random parameters,

respectively. The solution to (7) is equal to the best linear unbiased predictor (BLUP)

in the linear mixed model

yyy = Xβββ + ZKuuu+ εεε, Cov(uuu) = σ2
u(Ω

−1/2
K )(Ω

−1/2
K )′, (8)

where Ω
−1/2
K is based on the singular value decomposition. Note that ΩK is not a

positive definite matrix so it is not a proper covariance matrix; however, French et

al. (2001) show that the smooth fit is not affected by this fact. Let bbb = Ω
1/2
K uuu and

Z = ZKΩ
−1/2
K , then the mixed model (8) is equivalent to

yyy = Xβββ + Zbbb + εεε, Cov

(

bbb
εεε

)

=

(

σ2
b IK 000
000 σ2

ε In

)

. (9)

In a Bayesian framework, prior distributions need to be placed on all the model pa-

rameters.

2.3 Estimating µkl(t) and gikm(t)

To estimate the functions µkl(t) and gikm(t), k = 1, . . . , p, l = 1, . . . , r, m = 1, . . . , s, i =

1, . . . , n, we use the basis function approach described in Section 2.2. In particular, let

κ1, . . . , κK be K knots obtained as sample quantiles of tij, i = 1, . . . , n, j = 1, . . . , mi,

and let ΛK = [|κk − κk′ |3]1≤k,k′≤K be a K × K matrix. Let φφφ′
ij = (1 tij), ξξξ

′
ij =

(|tij − κ1|3, . . . , |tij − κK|3), and ψψψ′
ij = ξξξ′ijΛ

−1/2
K , where Λ

1/2
K is obtained via the singular

value decomposition. The vectors φφφij and ψψψij are basis functions evaluated at tij and
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are used to model the linear part and the nonlinear part, respectively, of the fixed and

random functions. In particular, µkl(t) and gikm(t) can be evaluated at tij by

µkl(tij) = φφφ′
ijβββkl + ψψψ′

ijvvvkl and gikm(tij) = φφφ′
ijwwwikm + ψψψ′

ijuuuikm (10)

for k = 1, . . . , p, l = 1, . . . , r, m = 1, . . . , s and i = 1, . . . , n. In (10), βββkl, vvvkl, wwwikm and

uuuikm are unknown parameter vectors.

2.4 Priors on the basis function coefficients and the variance

components

We place the following prior distributions on βββkl, vvvkl, wwwikm and uuuikm, k = 1, . . . , p,

l = 1, . . . , r, m = 1, . . . , s and i = 1, . . . , n.

1. βββkl
ind∼ N(000, σ2

βkl
I2), where I2 is a 2× 2 identity matrix, and σ2

βkl
is a large known

value.

2. vvvkl
ind∼ N(000, σ2

vkl
IK), where IK is a K ×K identity matrix, and K is the number

of knots.

3. wwwikm
ind∼ N(000, diag(σ2

wkm0
, σ2

wkm1
)).

4. uuuikm
ind∼ N(000, σ2

ukm
IK).

Similar prior distributions on the coefficients of the basis functions were used by Durbán

et al. (2005). Note that the variances of the elements of wwwikm are different while those

of the elements of uuuikm are all the same. This is merely for computational convenience

to avoid an additional (K−1) parameters. The priors on the variance components σ2
vkl

,

k = 1, . . . , p, l = 1, . . . , r, are independent inverse gamma distributions with densities

p(σ2
vkl

) ∝ (σ2
vkl

)−(a1+1) exp(−b1/σ2
vkl

) ,
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where a1 and b1 are known small values reflecting vague knowledge on σ2
vkl. The pri-

ors on σ2
wkm0

, σ2
wkm1

and σ2
ukm

are similar inverse gamma distributions. Recently, a

number of authors (see for example, Gelman, 2006) have proposed alternative prior

distributions for variance components which may exhibit superior behavior to that of

inverse gamma distributions. However, Zhao et al. (2006) reported good performance

of inverse gamma priors in the case of nonparametric regression, provided the hyper-

parameters are not too small. Specifically, hyperparameter values of 0.01 worked well,

whereas values of 0.001 behaved erratically.

2.5 Priors on the Ornstein-Uhlenbeck parameters

The Ornstein-Uhlenbeck process parameters are the matrix A and the matrix C = BB ′.

Both matrices consist of parameters which are constrained to satisfy certain conditions.

In particular, as mentioned in Section 2, the stationarity condition requires the real

parts of the eigenvalues of A to be positive. Also, the matrix C is required to be

symmetric and positive definite. Imposing the constraints directly on the elements of

these matrices would be difficult. Instead, we first express each of these matrices in an

appropriate decomposition and then place prior distributions on the parameters of the

decomposition factors. This is a much easier task, as the factor parameters are either

unconstrained or constrained to be nonnegative. To place a prior on A, we express it

as A = SΨS−1, where S is a matrix of linearly independent eigenvectors, and Ψ is a

diagonal matrix of real positive eigenvalues. This parameterization, used also by Sy

et al. (1997) for the bivariate Ornstein-Uhlenbeck process, satisfies the stationarity

condition mentioned above for the Ornstein-Uhlenbeck process. Äıt-Sahalia (2008)

discusses identifiability related to A and expresses it as a lower triangular matrix with

positive diagonal elements. Kessler and Rahbek (2004) discuss identifiability issues in
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the case of equidistant observation times. The matrix S is parameterized as S = (sij),

i, j = 1, . . . , p, with unit diagonal elements. Independent N(0, σ2
a) priors are placed on

the off-diagonal elements of S, and on the logarithms of the diagonal elements of Ψ.

The matrix C is symmetric and positive definite. To place priors on its elements which

satisfy the symmetry and positive definiteness, we first express the matrix C as a

modified Cholesky factorization, C = LDL′, where L is unit lower triangular, and D is

diagonal. This approach was used for example in Smith and Kohn (2002) and in Rosen

and Stoffer (2007). The emphasis of Rosen and Stoffer (2007) is on estimation in the

frequency domain for multivariate time series observed at equally spaced time points.

The priors on the off-diagonal elements of L are taken to be independent N(0, σ2
L) with

a fixed large value of σ2
L. The priors placed on log(Di), where Di is the ith diagonal

element of D, are independent N(0, σ2
D) with a fixed large value of σ2

D.

2.6 The sampling scheme

Let θθθk = (βββ ′
k1, vvv

′
k1, . . . , βββ

′
kr, vvv

′
kr)

′, for k = 1, . . . , p, and let θθθ = (θθθ′1, . . . , θθθ
′
p)

′. Similarly, let

ηηηik = (www′
ik1, uuu

′
ik1, . . . ,www

′
iks, uuu

′
iks)

′, for k = 1, . . . , p and ηηηi = (ηηη′i1, . . . , ηηη
′
ip)

′ for i = 1, . . . , n.

The sampling scheme consists of the following stages. More details are given in the

Appendix.

1. Initialize θθθ, ηηηi, i = 1, . . . , n, and the variance components by fitting p mixed

effects models, for k = 1, . . . , p. Initialize A and C by maximizing numerically

the log conditional joint posterior distribution of A and C.

2. Generate θθθ from its full conditional posterior distribution, which is multivariate

normal.

3. For each i, i = 1, . . . , n, generate ηηηi from its full conditional posterior distribution,
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which is multivariate normal.

4. For k = 1, . . . , p, l = 1, . . . , r, m = 1, . . . , s, generate the variance components

σ2
vkl

, σ2
wkm0

, σ2
wkm1

and σ2
ukm

from their full conditional posterior distributions,

which are inverse gamma.

5. Generate A from its full conditional posterior distribution. Since this distribution

is not standard, we use a Metropolis step with a multivariate normal proposal

density centered at the current value of A. The variance-covariance matrix of

this normal proposal is based on the inverse of the estimated negative hessian of

the log conditional posterior distribution.

6. Generate C from its full conditional posterior distribution using a Metropolis

step.

3 Simulations

In this section, we explore by simulation the potential improvement in curve fitting

when modeling the correlation structure of multivariate functional data rather than

ignoring it. Specifically, we examine improvements in mean squared error for the the

individual subject-level functions. For this purpose we generated 100 datasets, with

each dataset consisting of observations, without covariates, on n = 50 subjects. The

number of observations per subject is mi = 2 + wi, where wi is a Poisson random

variable with expectation 5, giving an average of 7 observation times per subject. The

observation times themselves were independently generated from a uniform distribution

on the interval [0, mi]. For each subject, there are p = 3 response variables with overall

subject mean functions chosen to represent a variety of possible relationships. The

first true mean function is µ1(t) = 7 sin(−.5t), which exhibits low frequency variation

14



on the range of t. Note that the second subscript on µ1(t) was dropped, since there

are no covariates in our simulation setting. The second true mean function is µ2(t) =

10φ(t; 1.5, .3) + 6φ(t; 4, .6), where φ(t; a, b) is a univariate normal density with mean a

and standard deviation b. The third true mean function is µ3(t) = 2 sin(−t), which has

higher frequency oscillations on the range of t. Let fik(t) = µk(t)+gik(t), k = 1, 2, 3, be

the individual subject functions, where we have again dropped the covariate subscript.

In particular,

fi1(t) = ai1 sin(−.5t) + ai2

fi2(t) = bi1φ(t; 1.5, .3) + bi2φ(t; 4, .6)

fi3(t) = ci1 sin(−t) + ci2 ,

(11)

where ai1 ∼ N(7, .5), ai2 ∼ N(0, .2), bi1 ∼ N(10, .25), bi2 ∼ N(6, .25), ci1 ∼ N(2, .5)

and ci2 ∼ N(0, .2). Here, N(a, b) indicates the univariate normal distribution with

mean a and standard deviation b. The observations yyyi(tij) were obtained by drawing

the random coefficients ai1, ai2, bi1, bi2, ci1, ci2, evaluating the equations in (11) at

time tij and adding δδδi(tij), which was in turn generated according to a multivariate

Ornstein-Uhlenbeck error process with parameter values

A =







2 −0.6 −0.6
−0.6 2 −0.6

0 0 2





 and C =







15 0 0
0 15 0
0 0 15





 .

These settings result in fairly noisy data with cross-correlations ranging from ..25 to

.47 among the three variables when evaluated at ∆̄ti = 1
mi

∑mi

j=1(tij − ti,j−1) ≈ 1. The

cross-correlation matrix is obtained from the cross-covariance (2), evaluated at ∆̄ti.

Plots of these mean functions along with one randomly generated dataset can be seen

in Figure 3.

Our model was fitted four times for each dataset, once for each univariate outcome

separately (thereby ignoring across-variable correlation) and then to all three outcomes

simultaneously. The sampling scheme was run for 10,000 iterations per dataset, with
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Figure 3: Mean functions (heavy lines) and data from one randomly generated dataset
(light lines) with 50 individual subjects.

a burn-in period of 5,000. Median estimates Â and Ĉ of the A and C matrices across

all 100 multivariate fits were given by

Â =







2.91 −0.72 −1.31
−0.38 2.29 −0.63

0.02 −0.07 3.03





 and Ĉ =







18.82 −0.81 −1.67
−0.81 16.81 −0.19
−1.67 −0.19 19.59





 .

To assess the quality of the resulting estimates of the three mean functions, we calcu-

lated the average squared difference between the function estimates and the true mean

functions at the unique observation times, t1 <, . . . , < tM . For the kth function this

was computed by

MSE
(1)
k =

1

M

M
∑

m=1

(µ̂k(tm) − µk(tm))2,

where µ̂k(·) is the fitted mean function for the kth response variable. This was done for

all three univariate fits, as well as for the joint trivariate fit. Boxplots of the resulting

MSE
(1)
k , k = 1, 2, 3, are displayed in Figure 4. These boxplots show that the separate

univariate fittings and the joint multivariate fitting resulted in little difference in the

mean squared error for the first variable but lower mean squared error for the second
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two. For the univariate fits, the median estimates for MSE
(1)
k were .244, 1.19, and

.206 for k = 1, 2, 3, respectively. For the multivariate fits, the corresponding median

estimates of MSE
(1)
k were .225, 1.03, and .188, for k = 1, 2, 3, respectively. Paired
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Figure 4: Boxplots of MSE
(1)
k for the posterior means µ̂k(·), k = 1, 2, 3, based on

100 simulated samples. Univariate and multivariate fits are denoted by U and M,
respectively.

t-tests of the log MSE
(1)
k showed no significant difference of logMSE

(1)
1 correspond-

ing to the univariate and multivariate fits (t = 1.0, p = 0.16) but that logMSE
(1)
2

and logMSE
(1)
3 were significantly lower for the multivariate fits (t = 2.3, p = 0.01

and t = 3.4, p < .0005, respectively). To assess the quality of the fitted individual

subject functional estimates, we calculated the average squared difference between the

true individual subject functions and their estimates from the model at the measured

observation times. For the kth variable, this mean squared error for the individual

subject functions was computed by

MSE
(2)
k =

1

m

n
∑

i=1

mi
∑

j=1

(f̂ik(tij) − fik(tij))
2,

where m =
∑n
i=1mi and f̂ik(·) is the fitted function for the ith subject’s kth response.
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Figure 5: Boxplots of MSE
(2)
k for the posterior means f̂ik(·), k = 1, 2, 3, i = 1, . . . , 25,

based on 100 simulated samples. Univariate and multivariate fits are denoted by U
and M, respectively.

Boxplots of the resulting mean squared errors for the individual subject functions are

displayed in Figure 5. The mean squared errors for the subject functions show a similar

pattern as for the overall mean. The median mean squared errors for each of the three

outcome variables for the univariate fits were .702, 3.02, and .445, respectively. The

median values for the corresponding multivariate fits were .676, 2.584, and .351. Thus,

there was a 15% − 20% reduction in mean squared error for the individual functions

for the last two variables when accounting for the multivariate covariance among them.

Again, there was no significant difference of logMSE
(2)
1 between the multivariate and

univariate fits (t = 0.33, p = 0.39) but the multivariate fits had significantly lower

logMSE
(2)
k for k = 2, 3 (t = 4.6, p < 0.0005, t = 9.2, p < 0.0005, respectively). One

possible reason why the first variable exhibits no improvement in mean squared errors

is that the low-frequency variation of the corresponding mean function renders it easier

to fit and hence it is less important to borrow information across variables.
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4 Application

As described in Section 1, we apply our methodology to the results of a randomized

clinical trial conducted at the University of Pittsburgh and the University of Pisa, Italy

(Frank et al., 2008). Despite decades of clinical trial experience in major depression,

there is only limited understanding of which patients with major depressive disorder

respond better to psychotherapy or to pharmacotherapy. This clinical trial compares

the effects of psychotherapy (129 subjects) vs. pharmacotherapy (123 subjects). For

clarity, Figure 6 shows the trajectories corresponding to 25 subjects only. We limit

the current analysis to the first 12 weeks after baseline, at which about 95% of the

subjects were still on study. Our methodology, which allows for nonlinear estimation

of time courses, can accommodate the subject trajectories which are clearly nonlin-

ear. In addition, our methodology accounts for the possibility of nonlinear effects of

baseline covariates over time. Of particular interest is the identification of baseline sub-

ject characteristics which differentially predict treatment response in the two groups.

The treatment response was change over time in two depression scales, the clinician-

administered Hamilton Rating Scale for Depression (HRSD) and the Quick Inventory

of Depression - Self Report (QIDS). These measures were collected more than once

per week on average, though there was variation both within and between patients

in the actual timing and number of measurements, with a mean of 11.2 measurement

times per subject over the course of treatment. The HRSD scores ranged from 0–31

with a median of 10, and the QIDS scores ranged from 0–26 with a median of 6. In

both measures, higher values indicate more depressive symptoms. Both measures were

log transformed and standardized before running the analyses. A Lifetime Depression

Spectrum (LDS) score was assessed on each patient at baseline; this gives an omnibus

measure of depressive symptomatology over a patient’s lifetime (Cassano, et al., 1997).
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Figure 6: HRSD subject trajectories (left panel) and QIDS subject trajectories (right
panel) for acutely depressed subjects. For clarity, only 25 subject trajectories are
displayed. Scores are standardized to have zero mean and unit variance. Trajectories
were truncated at 12 weeks.

In this example, we considered the LDS score to be a pre-treatment covariate with

potentially differential effects on treatment outcomes for the two treatment groups. To

explore this possibility, treatment group, LDS score, and their interaction were entered

as time-varying fixed effects into our model with responses HRSD and QIDS entered as

bivariate dependent variables. A time-varying random intercept was also included in

the model. In the notation of Section 2, xij = (xij1, xij2, xij3, xij4)
′ and zij = 1, where

xij1 = 1, xij2 is a group indicator (equal to 1 if subject i received psychotherapy and

zero otherwise), xij3 is the ith subject’s LDS score, and xij4 = xij2xij3. The sampling

scheme described in Section 2.6 was run for 10,000 iterations with a burn-in period of
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5,000 iterations. The estimated parameters of the Ornstein-Uhlenbeck process are

Â =

(

5.75 −3.88
−4.40 7.04

)

and Ĉ =

(

3.03 0.05
0.05 3.50

)

.
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Figure 7: Time-varying functional coefficients for HRSD responses. The solid lines
are µ̂1l(t), 1 ≤ l ≤ 4, and their corresponding pointwise 95% credible intervals. The
dashed lines are the analogous estimates and credible intervals corresponding to the
univariate fits. Upper left panel: µ̂11(t). Upper right panel: µ̂12(t). Lower left panel:
µ̂13(t). Lower right panel: µ̂14(t).

The estimated time-varying functional coefficients µ̂k(t) = (µ̂k1(t), µ̂k2(t), µ̂k3(t), µ̂k4(t))
′,

k = 1, 2, for the HRSD and QIDS responses are plotted in figures 7 and 8, respectively.

Solid lines correspond to the multivarite fits; for comparison, the univariate fits appear

in dashed lines. As can be seen in these plots, the multivariate fits show little evidence

for a treatment group effect on HRSD, but evidence for a slight difference in the QIDS
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Figure 8: Time-varying functional coefficients for QIDS responses. The solid lines are
µ̂2l(t), 1 ≤ 1 ≤ 4, and their corresponding 95% credible intervals. The dashed lines
are the analogous estimates and credible intervals corresponding to the univariate fits.
Upper left panel: µ̂21(t). Upper right panel: µ̂22(t). Lower left panel: µ̂23(t). Lower
right panel: µ̂24(t).

at around 3 weeks. However, there is a significant effect of LDS score on both out-

comes, so that higher lifetime depression spectrum predicts worse outcomes over the

first eight weeks or so. The interaction term is insignificant for HRSD and marginally

significant in the 2–8 week time period for the QIDS responses. The effect of the inter-

action on responses is that LDS score is less predictive of poor QIDS response in the

psychotherapy group than in the pharmacotherapy group. In general, the pointwise

95% credible intervals are wider for the univariate fits. While the functional coefficient

estimates were substantially similar, the interaction coefficient for both models were

not significant, i.e., the pointwise 95% credible intervals contained zero for the entire
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time course.

5 Discussion

In this paper we have devised a regression model apropriate for multivariate functional

responses with unequally-spaced observation times. Efficiency may be gained by fitting

a single regression with all response variables simultaneously, as opposed to fitting

regression models for each functional response separately. This is especially true if

the error terms corresponding to each variable are correlated. In our formulation,

the random error terms of the model were assumed to follow a multivariate Ornstein-

Uhlenbeck process. Through this formulation we were able to extend the seemingly

unrelated regression framework to the unequally-spaced multivariate functional data

context.

The model we proposed uses a Bayesian mixed-effects approach, where the fixed part

corresponds to the mean functions, and the random part corresponds to individual

deviations from these mean functions. Covariates were allowed as either fixed or ran-

dom effects. For each of the response variables, both the mean and the subject-specific

deviations were estimated via low-rank cubic splines using radial basis functions. Thus

mean and subject-specific deviation from the mean were allowed to vary smoothly as

a function of time. Inference was performed via Markov chain Monte Carlo methods.

We demonstrated the improvement in efficiency that is possible by using this model in

simulations which show mean squared-error is lower for the full multivariate algorithm

compared to fitting each of the functional responses unvariately, thereby ignoring the

across-variable correlation. This seems especially important when the mean functions

are wiggly, so that borrowing information across multiple responses becomes more
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important.

Finally, the utility of this methodology was demonstrated by application to a real-life

psychiatric dataset looking at the relationship of multiple depression measures over time

in a clinical trial. Here, using a multivariate approach resulted in narrower posterior

confidence bands.

We plan future research to extend the multivariate functional model to mixed discrete

and continuous functional outcome data. We also plan to develop methods for the joint

analysis of mulitvariate functional data and time-to-event data.
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Appendix

Starting values for θθθ, ηηηis and σσσ2:

Let Dr
φij

= Ir⊗φφφ′
ij, where ⊗ denotes the Kronecker product, and Ir is an r×r identity

matrix. Define Dr
ψij

, Ds
φij

and Ds
ψij

similarly.
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Let

X0 =









X1
...
Xn









and Z0 =

















Zv1
Zv2 blockdiag(Zwi)

i=1,...,n
blockdiag(Zui)

i=1,...,n
...
Zvn

















,

where

Xi =









xxx′i1D
r
φi1

...
xxx′imi

Dr
φimi









, Zvi =









xxx′i1D
r
ψi1

...
xxx′imi

Dr
ψimi









, Zwi =









zzz′i1D
s
φi1

...
zzz′imi

Ds
φimi









and Zui =









zzz′i1D
s
ψi1

...
zzz′imi

Ds
ψimi









.

To obtain starting values for θθθ, {ηηηi}
i=1,...,n

and σσσ2, we fit the mixed effects model

yyy = X0βββk0 + Z0νννk0 + εεεk ,

for k = 1, . . . , p, where βββk0 = (βββ ′
k1, . . . , βββ

′
kr)

′, νννk0 = (vvv′k1, . . . , vvv
′
kr, {www′

ik1, . . . ,www
′
iks}

i=1,...,n
, {uuu′ik1, . . . , uuu′iks}

i=1,...,n
)′

and

cov(νννk0, εεεk) =











σ2
kv0IKr 0Kr×2sn 0Kr×Ksn 0Kr×n

02sn×Kr σ2
kw0I2sn 02sn×Ksn 02sn×n

0Ksn×Kr 0Ksn×2sn σ2
ku0IKsn 0Ksn×n

0n×Kr 0n×2sn 0n×Ksn σ2
kεIn











.

Generating θθθ:

Let Γrij = Ir ⊗ (φφφ′
ij ψψψ′

ij), Γsij = Is ⊗ (φφφ′ij ψψψ′
ij), χij = Ip ⊗ (xxx′ijΓrij) and Eij =

Ip ⊗ (zzz′ijΓsij). The error term in model (1) can be expressed as

δδδi(tij) = yyyi(tij) − χijθθθ − Eijηηηi , (A1)

where the vectors θθθ and ηηηi are as defined at the beginning of Section 2.6. Plugging

(A1) into γγγtij = δδδi(tij) − exp(−A∆tij)δδδi(ti,j−1) gives

γγγtij = ζζζ i(tij, ti,j−1) − χi(tij, ti,j−1)θθθ ,

where

ζζζ i(tij, ti,j−1) = yyyi(tij) − Eijηηηi − exp(−A∆tij)[yyyi(ti,j−1) − Ei,j−1ηηηi]
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and

χi(tij, ti,j−1) = χij − exp(−A∆tij)χi,j−1 .

LetG = blockdiag(σ−2
β11
I2, σ

−2
v11
IK , . . . , σ

−2
β1r
I2, σ

−2
v1r
IK, . . . , σ

−2
βp1
I2, σ

−2
vp1
IK, . . . , σ

−2
βpr
I2, σ

−2
vpr
IK).

Then,

[θθθ|ηηη, A, C,σσσ2, yyy] ∼ N(µµµθ,Σθ) ,

where σσσ2 = (σ2
βkl
, σ2

vkl
, σ2

wkm0
, σ2

wkm1
, σ2

ukm
)’ for k = 1, . . . , p, l = 1, . . . , r, m = 1, . . . , s,

Σθ = [G+
n
∑

i=1

mi
∑

j=1

χ′
i(tij, ti,j−1)Ω

−1
∆tij

χi(tij, ti,j−1)]
−1

and

µµµ′
θ = [

n
∑

i=1

mi
∑

j=1

ζζζ ′i(tij, ti,j−1)Ω
−1
∆tij

χi(tij, ti,j−1)]Σθ .

In the expression for Ω∆tij , when p = 2, the stationary variance of the Ornstein-

Uhlenbeck process is given by

Σ =
det(A)C + [A− tr(A)I]C[A− tr(A)I]′

2tr(A)det(A)
,

see Gardiner (1983). For p = 1, this reduces to Σ = C/(2A). For p > 2, Σ can be

obtained numerically by Matlab’s lyap function, for example.

Generating ηηηi:

Let

qqqi(tij, ti,j−1) = yyyi(tij) − χijθθθ − exp(−A∆tij)[yyyi(ti,j−1) − χi,j−1θθθ]

and

Gwu = blockdiag(Σ−1
w11
, σ−2

u11
IK, . . . ,Σ

−1
w1s
, σ−2

u1s
IK, . . . ,Σ

−1
wp1
, σ−2

up1
IK, . . . ,Σ

−1
wps
, σ−2

ups
IK) ,

where Σwkm
= diag(σ2

wkm0
, σ2

wkm1
). Then

[ηηηi|θθθ, A, C, σ2, yyy] ∼ N(µηi
,Σηi

) ,

26



where

Σηi
= [

mi
∑

j=1

E ′
i(tij, ti,j−1)Ω

−1
∆tij

Ei(tij, ti,j−1) +Gwu]
−1

and

µµµ′
ηi

= [
mi
∑

j=1

qqq′i(tij, ti,j−1)Ω
−1
∆tij

Ei(tij, ti,j−1)]Σηi
.

Generating σσσ2:

σ2
vkl
|vkl ∼ IG(K/2 + a1, b1 +

1

2
vvv′klvvvkl)

for k = 1, . . . , p, l = 1, . . . , r.

σ2
wkm0

| {wwwikm0}
i=1,...,n

∼ IG(n/2 + a2, b2 +
1

2

n
∑

i=1

w2
ikm0)

σ2
wkm1

| {wwwikm1}
i=1,...,n

∼ IG(n/2 + a3, b3 +
1

2

n
∑

i=1

w2
ikm1)

σ2
ukm

| {uuuikm}
i=1,...,n

∼ IG(
nK

2
+ a4, b4 +

1

2

n
∑

i=1

uuu′ikmuuuikm)

for k = 1, . . . , p, m = 1, . . . , s.

Starting values for A and C:

Starting values for A and C are obtained by numerically maximizing the conditional

posterior

p(A,C|θθθ0, {ηηηi0}
i=1,...,n

, yyy) ∝
n
∏

i=1

mi
∏

j=1

|Ω∆tij |−1/2 exp
{

−1

2
γγγ′tijΩ

−1
∆tij

γγγtij

}

× p(A) × p(C) ,

where θθθ0 and ηηηi0, i = 1, . . . , n, are the starting values for the basis function coefficients.

Note that γγγtij depends on θθθ0 and ηηηi0, i = 1, . . . , n, through δδδi(tij) (expression (A1)).

Generating the Ornstein-Uhlenbeck process parameters:

To generate A, note that

p(A|C,θθθ, {ηηηi}
i=1,...,n

, yyy) ∝
n
∏

i=1

mi
∏

j=1

|Ω∆tij |−1/2 exp
{

−1

2
γγγ′tijΩ

−1
∆tij

γγγtij

}

× p(A) . (A2)

Since (A2) is not a standard distribution, we use a Metropolis step to generate A. The

proposal distribution is multivariate normal centered at the current value of A with a
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variance-covariance matrix equal to the inverse of the negative Hessian of the log of (A2)

evaluated numerically at the mode. This variance-covariance matrix is computed once,

conditional on the starting values for the other parameters, and is then fixed throughout

the sampling scheme. To increase the acceptance rate, this variance-covariance matrix

is multiplied by 5.76/p, as proposed in Gelman et al. (2004), page 306. More generally,

when using a normal proposal distribution centered at the current point, Gelman et

al. (2004) suggest using c2Σ as the covariance matrix of that proposal distribution.

Among this class of proposal densities, the most efficient one has scale c ≈ 2.4/
√
p.

The acceptance probability is

min

{

1,
p(Ap|C,θθθ, {ηηηi}i=1,...,n, yyy)

p(Ac|C,θθθ, {ηηηi}i=1,...,n, yyy)

}

.

The matrix C is generated by first generating the matrices L and D via a Metropolis

step based on

p(L,D|A,θθθ, {ηηηi}
i=1,...,n

, yyy) ∝
n
∏

i=1

mi
∏

j=1

|Ω∆tij |−1/2 exp
{

−1

2
γγγ′tijΩ

−1
∆tij

γγγtij

}

× p(L) × p(D) .

An iterate for C is then given by C = LDL′.
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