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Abstract

Elliptical copulas provide flexibility in modeling the dependence structure of a
random vector. They are often parameterized with a correlation matrix and a scalar
function, called generator. The estimation of the generator can be challenging, be-
cause it is a functional parameter. In this paper, we provide a rigorous approach to
estimating the generator in a Bayesian framework, which is simpler, more robust, and
outperforms existing estimation methods in the literature. A major contribution of
this paper is a robust method of evaluating the elliptical copula likelihood by using
mixtures of B-spline densities. The Matlab code used for the simulation study is
available in the supplementary material.
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1 Introduction

Elliptical copulas are derived from the family of elliptical distributions, and are often pa-

rameterized with a correlation matrix and a scalar function known as a generator. In this

paper, we propose a method for estimating generators of elliptical copulas in a Bayesian

framework using mixtures of B-spline densities.

According to Sklar (1959), a multivariate distribution with continuous marginals can be

uniquely represented by a copula and a set of marginal distributions. Specifically, the joint

cumulative distribution function (CDF) of d ≥ 2 continuous random variables (Z1, . . . , Zd),

can be represented by

F (z1, . . . , zd) = C{F1(z1), . . . , Fd(zd)},

where C is a copula and F1, . . . , Fd are marginal CDFs. If these marginals are continuous,

then the copula C is unique. The copula C describes the dependence structure of the

multivariate distribution, and in itself is a multivariate distribution with uniform margins.

The copula itself can be expressed by inversion as follows.

C(u1, . . . , ud) = F
{
F−1

1 (u1), . . . , F−1
d (ud)

}
, u1, . . . , ud ∈ (0, 1), (1)

where F−1
1 , . . . , F−1

d are the inverse CDFs, see Nelsen (2006). If the copula C is absolutely

continuous with respect to Lebesgue’s measure, the copula probability density function

(PDF) is obtained by differentiating Equation (1).

c(u1, . . . , ud) =
f
{
F−1

1 (u1), . . . , F−1
d (ud)

}∏d
k=1 fk

{
F−1
k (uk)

} , u1, . . . , ud ∈ (0, 1),

where f is the PDF corresponding to F and f1, . . . , fd are the marginal PDFs. For a

detailed introduction to copula theory, see Nelsen (2006).

Elliptical copulas, also known as meta-elliptical copulas and originally introduced by

Fang et al. (2002), are extensions of Gaussian copulas. Elliptical copulas induce the depen-

dence in elliptical distributions by analogy to the way Gaussian copulas characterize the
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dependence in multivariate Gaussian distributions. A d-dimensional continuous random

vector X = (X1, ..., Xd) has an elliptical distribution Ed(µ,Σ, g) if its PDF is of the form

f(x | µ,Σ, g) = det(Σ)−1/2g
{

(x− µ)>Σ−1(x− µ)
}
, (2)

where µ is a mean vector, Σ is a covariance matrix, and g is a generator, which is a non-

negative function defined on [0,∞). A typical example of an elliptical distribution is the

multivariate Gaussian distribution, whose generator satisfies g(t) ∝ exp(−t/2). Genera-

tors of other common elliptical distributions, such as the multivariate Student-t and the

multivariate logistic distributions, can be found, for example, in Genest et al. (2007) and

Lemonte and Patriota (2011).

Since our article is focused on elliptical copulas, without loss of generality, we only

consider elliptical distributions E(0,Ω, g), where Ω is a correlation matrix. In this case, the

elliptical distribution has identical margins. If a d-variate random vector X has elliptical

distribution E(0,Ω, g), it can be expressed in the following stochastic representation (see

Fang et al. (2002) and Fang et al. (2005))

X = RAU , (3)

where A is a Cholesky factor such that AA> = Ω, U is a random vector uniformly dis-

tributed on the unit sphere in Rd, and R is a continuous nonnegative random variable,

independent of U , with PDF

h(r) =
2πd/2

Γ(d/2)
rd−1g(r2). (4)

Elliptical distributions generalize spherical distributions. In particular, if X has an ellipti-

cal distribution, Y = A−1X has a spherical distribution whose stochastic form is Y = RU .

It is straightforward to show that R in Equation (3) is equal to (Y >Y )1/2, which is the

Euclidean distance from Y to the origin. The isodensity lines of a two-dimensional spher-

ical distribution are circles, where R can intuitively be viewed as their “radius”. For a
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detailed introduction to spherical distributions, see Kelker (1970), Cambanis et al. (1981)

and Steerneman and van Perlo-ten Kleij (2005). The geometric interpretation of R gives

insight into the role of the generator g in Equation (2), since g and the distribution of R

are closely related. This is discussed in Section 2.

The PDF of an elliptical copula can be derived from the density of an elliptical distri-

bution E(0,Ω, g) via the inversion method, resulting in

c(u | Ω, g) =
det(Ω)−1/2g

{
F−1
g (u)>Ω−1F−1

g (u)
}∏d

j=1 fg
{
F−1
g (uj)

} , u ∈ [0, 1]d, (5)

where the numerator is the PDF of E(0,Ω, g), and fg and Fg are its marginal PDF and

CDF, respectively. The PDF fg and the CDF Fg are given by (See Abdous et al. (2005))

fg(x) =
π(d−1)/2

Γ
(
d−1

2

) ∫ ∞
x2

(y − x2)
d−1
2
−1g(y)dy, (6)

and

Fg(x) =
1

2
+
π(d−1)/2

Γ
(
d−1

2

) ∫ x

0

∫ ∞
u2

(y − u2)
d−1
2
−1g(y)dydu. (7)

We denote the elliptical copula in (5) by C(Ω, g), and refer to E(0,Ω, g) as the “associated”

elliptical distribution, which means that it is the distribution from which the copula is

derived.

Though elliptical copulas have been around for a long time, research on the estimation

of elliptical copulas is fairly scarce. Related articles are mostly focused on the application

of specific types of elliptical copulas, such as Gaussian or Student-t copulas, where a known

generator g is assumed. Genest et al. (2007) assume that the generator g is unknown but

is one option from a fixed list. Genest et al. (2007) provide goodness-of-fit tests to select

the best generator from a list for a given data set. The main challenge in estimating

an elliptical copula without assuming a pre-determined generator is the evaluation of the

likelihood function. Assuming a single observation u = (u1, . . . , ud) drawn from a d-

dimensional elliptical copula with PDF of the form (5) and a known correlation matrix Ω,
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evaluating the likelihood

`1(ĝ | u) =
det(Ω)−1/2ĝ

{
F−1
ĝ (u)>Ω−1F−1

ĝ (u)
}∏d

j=1 fĝ
{
F−1
ĝ (uj)

} (8)

for a given estimate, ĝ, of the generator, requires the evaluation of fĝ and Fĝ according

to equations (6) and (7) and inverting Fĝ, which may be infeasible. Recently, an iterative

procedure was proposed by Derumigny and Fermanian (2022) which evaluates the gener-

ator of an elliptical copula on a grid. The algorithm iteratively converts the copula data

into pseudo-data having an elliptical distribution and then estimates the generator of the

elliptical distribution using the procedure in Liebscher (2005). Doing so, Derumigny and

Fermanian (2022) avoid the evaluation of the likelihood in Equation (8). Rather, they

estimate an elliptical distribution from the transformed data by evaluating the likelihood

`2(ĝ | u) = det(Ω)−1/2ĝ
(
x∗>Ω−1x∗

)
, (9)

where x∗ = F−1
ĝ (u) are the pseudo-data. The drawbacks to the procedure of Derumigny

and Fermanian (2022) are two-fold. First, they compute the likelihood in Equation (9)

rather than that of Equation (8), hindering the understanding of theoretical properties

of their algorithm. Second, their simulation studies do not show good results in most of

the simulation settings. In this paper, we model elliptical copula generators by using B-

spline PDFs, which eases the computation of fg and F−1
g , facilitates direct evaluation of

the likelihood (8) and Bayesian computation via Markov chain Monte Carlo methods. Our

method returns a function as the estimate of g unlike the estimated values of g on a grid

which result from the algorithm of Derumigny and Fermanian (2022).

Our paper is organized as follows. Section 2 introduces properties of generators of

elliptical copulas as well as the difference between generators of elliptical copulas and those

of elliptical distributions. Section 3 presents the proposed methodology, while Section 4

introduces meta-elliptical distributions (whose dependence structure is induced by elliptical

copulas). Sections 5 and 6 present the results of the simulation study for the bivariate case
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and for higher-dimensional settings, respectively. Section 7 illustrates the method with an

application to wine data. Section 8 concludes with a discussion.

2 The Generator

Equation (4) expresses the PDF of R in the stochastic representation (3) as a function of

the generator g. The generator g in turn is given by

g(t) =
Γ(d/2)

2πd/2
t(1−d)/2h

(
t1/2
)
, t > 0, (10)

see Genest et al. (2007) or Liebscher (2005). Since h(r) is a PDF, it follows that the

generator g must satisfy ∫ ∞
0

rd−1g
(
r2
)
dr =

Γ(d/2)

2πd/2
. (11)

Other constraints on g are detailed in Derumigny and Fermanian (2022) but do not play

an important role in what follows. If a function does not satisfy Equation (11), it can be

transformed to do so. We refer to this process as “normalization”, because it amounts to

normalizing the corresponding PDF of R.

The elliptical copula C(Ω, g) is parameterized in the same way as its associated elliptical

distribution E(0,Ω, g). However, generators for elliptical copulas are not unique, see Deru-

migny and Fermanian (2022). In particular, the marginal PDF and CDF of E(0,Ω, g) for a

given generator g are given in equations (6) and (7) from which it is seen that an elliptical

distribution’s generator contains not only information about the dependence structure, but

also information about the marginal distributions. This can result in non-identifiability

when using g to parameterize an elliptical copula. Specifically, assume that two elliptical

distributions, E(0,Ω, ga) and E(0,Ω, gb), share the same dependence structure but differ in

their marginal distributions. In this case, these distributions have different generators, ga

and gb, but their copulas are identical, which may be denoted by either C(Ω, ga) or C(Ω, gb).

The correlation matrix Ω is unique and identifiable for elliptical copulas, because it con-
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tains only information about the linear dependence. Derumigny and Fermanian (2022)

propose a transformation for modifying the generator of an elliptical copula that preserves

its dependence structure. In particular, let Ω be a positive-definite correlation matrix and

g a generator. Then, for any positive value α, C(Ω, g) = C(Ω, gα), where

gα(t) = αd/2g(αt). (12)

That is, the dependence structure induced by g is invariant under the transformation (12),

although Fg and fg have become Fgα and fgα due to the dependence of the marginal

PDF and CDF on the generator in equations (6) and (7). Transformation (12) is able to

make the generator unique and constrain the marginal distribution to a have a specific

form. According to Derumigny and Fermanian (2022), for an elliptical copula, there “most

often” exists a unique normalized generator g satisfying

π
d−1
2

Γ
(
d−1

2

) ∫ ∞
0

s
d−3
2 g(s)ds = b, (13)

where b is a positive number that is referred to as a standardization constant. In other

words, each elliptical copula has only one generator satisfying the constraint in Equa-

tion (13). The quantity b is in fact fg(0). Fixing fg(0) = b specifies fg, it is not necessary

to fix the values of fg everywhere. For a detailed proof, see Proposition 3 and Appendix A

in Derumigny and Fermanian (2022). We provide below Algorithm 1 for standardizing the

generator of an elliptical copula. It has been modified from the algorithm in Derumigny

and Fermanian (2022).

Algorithm 1 Standardizing the Generator

Input: A generator g that is already normalized.

1: Compute I2 =
∫∞

0
t(d−3)/2g(t)dt ;

2: Set β = {b/(sd−1 I2)}2, where b is any positive constant, and sd−1 = π(d−1)/2

Γ{(d−1)/2} ;

3: Calculate gs = βd/2 g(β t) .

Output: A modified version gs satisfying the normalization and identification constraints.
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3 The model, prior and sampling scheme

3.1 The model

Liebscher (2005) proposes a method for constructing models for the generator of an el-

liptical distribution, and our model is built in this framework. In particular, let Ψ be a

transformation function such that Y = Ψ(R) where

Ψ(R) = −a+
(
ad/2 +Rd

)2/d
. (14)

In Equation (14), a is a positive constant, such as 1, and R is the “radius” in the stochas-

tic form (3). In Section 6, which discusses the case d > 2, we take advantage of the

special property of ellipical copulas, i.e., identical margins, and select any two variates

to fit the copula. This renders the choice of a specific value of a unnecessary, since

in this case a cancels out from Equation (14). We model the PDF of Y , fY (y), via

a mixture of (K + 4) B-spline densities (Ghidey et al. (2004)) with a knot sequence

0 = T1, T2, . . . , TK , TK+1, TK+2, TK+3 = ymax, given by

fY (y) =

j=K+2∑
j=−1

wjB̃j(y), (15)

where the weights w−1, . . . , wK+2 are of the form

wj =
exp(νj)∑K+2
`=−1 exp(ν`)

. (16)

In Equation (16), the νj are unknown unconstrained parameters, and for identifiability,

νK+2 is set to zero. The B̃j(x) are B-spline PDFs, which are normalized B-splines that

integrate to 1. These B-splines can be constructed by first using the Cox–de Boor recursion

formula (de Boor (1978)) and then normalizing the resulting B-splines such that they

integrate to 1. For details, see the Appendix, where we use the formulation of B-spline

PDFs from Staudenmayer et al. (2008). In our experiments, using up to 30 B-spline PDFs

is usually adequate for estimating the PDF fY . The support of fY is taken to be [0, ymax],
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which simplifies the computation of the likelihood. Recall that the generator g is a function

of h(r), as is evident from Equation (10). The PDF h(r) in turn can be expressed as a

function of fY via a change of variables. Specifically, the transformation Jacobian Y → R

is given by JY→R = 2rd−1(ad/2 + rd)2/d−1 from which it follows that

h(r) = 2rd−1(ad/2 + rd)2/d−1fY {−a+ (ad/2 + rd)2/d}.

Plugging the expression for h(r) into Equation (10) and expressing fY (y) as in (15) results

in

g(t) =
Γ(d/2)

πd/2
(ad/2 + td/2)2/d−1

i=K+2∑
i=−1

wiB̃i{−a+ (ad/2 + td/2)2/d}. (17)

In model (17), the generator g is defined on the interval
[
0, tmax = {(ymax + a)d/2 − ad/2}2/d

]
instead of [0,∞), which simplifies the evaluation of the likelihood for given weights (w−1, . . . , wK+2)

in Equation (15).

3.2 Priors

Prior on ν = {ν−1, . . . , νK+1}:

We follow Rosen and Thompson (2015) in placing a smoothing prior on ν. This prior is

in fact a Bayesian version of the smoothing penalty advocated by Eilers and Marx (1996,

2021) which also gave rise to Bayesian P-splines (Lang and Brezger (2004)). In particular,

defining ∆νj = νj − νj−1 and ∆2νj = ∆νj −∆νj−1, Lang and Brezger (2004) let

∆2νj = δj, j = 1, . . . , K + 2,

where δj ∼ N (0, τ 2) and the variance parameter τ 2 controls the amount of smoothness.

To avoid impropriety of this prior, Chib and Jeliazkov (2006) place a joint normal prior on

(ν−1, ν0), i.e., (ν−1, ν0) ∼ N2(0, cτ 2I2), where c is a fixed constant. The resulting prior on

v is

p(ν | τ 2) ∝
(
τ 2
)− 1

2
(K+3)

exp

(
− 1

2τ 2
ν>P ∗ν

)
,
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where P = D>D, D is the following (K + 1)× (K + 3) second-order difference matrix

D =



1 -2 1 0 0 . . . 0

0 1 -2 1 0 . . . 0

...
...

. . .
...

0 0 . . . 1 -2 1


and P ∗`,` = P`,` + c−1 for ` = 1, 2.

Prior on τ :

The parameter τ is assumed to follow a Half-t distribution (Gelman (2006)), with PDF

p(τ | nτ , A) ∝
(

1 +
τ 2

A2nτ

)−nτ+1
2

,

where the hyperparameters nτ and A are assumed known.

3.3 The likelihood

Based on N independent observations U 1, . . . ,UN from an elliptical copula C(Ω, g) (Equa-

tion (5)), where the correlation matrix Ω is assumed known, the likelihood function is given

by

L(w−1, . . . , wK+2 | U 1, . . . ,UN) =
N∏
i=1

[
det(Ω)−1/2gs{F−1

gs (U i)
>Ω−1F−1

gs (U i)}∏d
j=1 fgs{F−1

gs (Uij)}

]
, (18)

where gs is the standardized version of g via Algorithm 1. Recall that fg and Fg are the

marginal PDF and CDF of the associated elliptical distribution E(0,Ω, g), and F−1
g is the

inverse CDF, all of which can be derived from g using equations (6) and (7). The functions

fgs , Fgs and F−1
gs in Equation (18) can be derived from fg, Fg and F−1

g . Computing Fg and

fg for a given g involves complicated integrals which makes the evaluation of the likelihood

challenging. Using numerical integration to evaluate Fg and fg and root finding methods to

obtain the inverse function F−1
g can be very time consuming and often inaccurate. Instead,

we use B-spline smoothing to approximate fg, Fg and F−1
g .
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Obtaining the marginal density fg: Instead of directly deriving fg from the generator g

via Equation (6), this task can be accomplished in two steps. The marginal distributions

of an elliptical distribution are also elliptical, having their own generators. Recall that

the distribution E(0,Ω, g) has identical marginal distributions. The generator g1 of this

marginal distribution can be derived by

g1(u) =
π(d−1)/2

Γ {(d− 1)/2}

∫ ∞
0

g(u+ s)s(d−3)/2ds. (19)

The marginal PDF fg can in turn be directly expressed as

fg(x) = g1(x2). (20)

For more details, see Appendix A of Derumigny and Fermanian (2022) and Theorem 6 of

Gómez et al. (2003). To approximate fg, we approximate g1 first. Since g is derived from a

mixture of B-spline densities, its support is the interval [0, tmax = {(ymax +a)d/2−ad/2}2/d].

Thus, Equation (19) reduces to

g1(u) =
π(d−1)/2

Γ {(d− 1)/2}

∫ tmax−u

0

g(u+ s)s(d−3)/2I[0,tmax](u)ds,

where I[a,b](·) is an indicator function. Note that both the integrand and the integral limits

change with u, which makes the computation of the integral difficult. Suppose we wish to

compute g1(ui), where ui is a real number in the interval [0, tmax]. We need to evaluate the

integral ∫ tmax−ui

0

g(ui + s)s(d−3)/2ds.

First, we divide the interval [0, tmax − ui] into n subintervals, each of length ∆x = (tmax −

ui)/n. This yields a grid of equally spaced points:

X = (0, ∆x, 2∆x, . . . , tmax − ui).

Next, we evaluate the integrand g(ui + s)s(d−3)/2 on X, resulting in

Y = g(ui +X)X(d−3)/2.
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Given the sequence X and Y , the integral in g1(ui) can be approximated using the Trape-

zoidal or Simpson’s rules. Next, we approximate the values of g1 at an equally-spaced grid

consisting of n points, u0 = 0, . . . , un = tmax. (Note that the letter n is used to denote the

number of points in a grid. A grid of length n is constructed multiple times for function

approximation through spline smoothing and interpolation. The sample size is denoted by

N .) The approximation process of g1(u0), . . . , g1(un) is described in Table 1. This approach

is also taken by Derumigny and Fermanian (2022).

Table 1: Approximating g1 via the Trapezoid rule.

ui X Y = g(ui +X)X(d−3)/2 g1(ui) ∝ Trapz(X, Y )

u0 = 0 0, . . . , tmax . . . . . .

. . . . . . . . . . . .

uj 0, . . . , tmax − uj . . . . . .

. . . . . . . . . . . .

un = tmax 0 0 0

Given the sample points {(u0, g1(u0)), . . . , (un, g1(un))}, Equation (20) is used to eval-

uate fg at an equally spaced grid: {−un1/2, . . . , −u1
1/2, 0, u1

1/2, . . . , un
1/2}, resulting in

the sample points

fg(−un1/2), . . . , fg(−u1
1/2), fg(0), fg(u1

1/2), . . . , fg(un
1/2). (21)

The sequence in (21) is used to fit a curve for approximating fg. The curve fitting is

performed using the MATLAB functions fit and cfit, with the fit type option set to

smoothingspline. A detailed introduction to spline fitting can be found in Eilers and

Marx (2021). Note that fg is a probability density function (PDF), and so is its approxi-

mation. The fitted curve must be normalized if it does not integrate to one over its support,

[−t1/2max, t
1/2
max], which is determined by the domain of g1 and Equation (20).
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Obtaining the marginal cumulative distribution function Fg: The function Fg is the integral

of fg which is already approximated by a spline function. Its integral

Fg(x) =

∫ x

−t1/2max

fg(x)I
[−t1/2max,t

1/2
max]

(x)dx

is obtained via the function integrate in Matlab.

Obtaining the marginal quantile function F−1
g : First, the function Fg is evaluated at an

equally spaced grid

{x1 = −t1/2max, . . . , xn = t1/2max}

resulting in the sequence

Fg(x1), . . . , Fg(xn). (22)

Next, the x- and y-axes of the sample in (22) are swapped, and interpolation is applied

to obtain a functional approximation of F−1
g . For simplicity, we use linear interpolation,

following the approach of Derumigny and Fermanian (2022). The interpolation is performed

using the interp1 function in MATLAB.

Standardization of related functions: Given a standardizing constant b and a generator as

in Equation (17), the standardized generator resulting from Algorithm 1 can be expressed

as

gs = βd/2 g(β t), t ∈ [0, tmax/β],

where β is computed from the constant b, as shown in Algorithm 1. It follows that

g1s(u) =
π(d−1)/2

Γ {(d− 1)/2}

∫ ∞
0

gs(u+ s)s(d−3)/2ds

=
π(d−1)/2

Γ {(d− 1)/2}

∫ ∞
0

βd/2g(β u+ β s)s(d−3)/2ds

=
π(d−1)/2

Γ {(d− 1)/2}

∫ ∞
0

β1/2g(β u+ S)S(d−3)/2dS

= β1/2g1(βu),

where we have used the substitution s = S/β. Next,
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fgs(x) = g1s (x2)

= β1/2g1 (βx2)

= β1/2fg
(
β1/2x

)
, x ∈ [−(tmax/β)1/2, (tmax/β)1/2],

Fgs(x) =
∫ x
−∞ fgs (u) du

=
∫ x
−∞ β

1/2fg
(
β1/2u

)
du

= Fg(β
1/2x), x ∈ [−(tmax/β)1/2, (tmax/β)1/2],

and

Fg
−1
s (x) = F−1

g (x)/β1/2,

where Fg
−1
s has the range [−(tmax/β)1/2, (tmax/β)1/2]. Model (17) leads to a closed domain

or range for the related functions gs, fgs and Fg
−1
s , making the evaluation of the copula

likelihood (18) feasible in terms of both speed and accuracy.

3.4 Sampling Scheme

The posterior distribution does not admit simple posterior conditional distributions, and

for this reason we use Metropolis steps to sample all the parameters.

The proposal distributions for the νj in Equation (16) are all uniform. In particular,

a new value ν
(p)
j is proposed by ν

(p)
j ∼ U(ν

(c)
j − δν , ν

(c)
j + δν), where δν is a fixed tuning

parameter and ν
(c)
j is the current value of νj. The entries of ν = (ν−1, . . . , νK+1) are

sampled jointly. The proposed vector ν(p) = (ν
(p)
−1 , . . . , ν

(p)
K+1) is accepted with probability

min{1, pν(ν(p) | · · · )/pν(ν(c) | · · · )}, where pν(ν | · · · ) is the conditional posterior PDF of

ν = (ν−1, . . . , νK+1) conditional on the current values of the other parameters.
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Since τ is a positive number, we set τ∗ = ln(τ). A new value τ
(p)
∗ is proposed by τ

(p)
∗ ∼

U(τ
(c)
∗ − δτ , τ (c)

∗ + δτ ), where δτ is a fixed tuning parameter and τ
(c)
∗ is the current value of

τ∗. The proposed value τ∗ is accepted with probability min{1, pτ∗(τ
(p)
∗ | · · · )/pτ∗(τ

(c)
∗ | · · · )},

where pτ∗(τ∗ | · · · ) is the conditional posterior PDF of τ∗, conditional on the current values

of ν. Before starting the MCMC loop, we tune the values of δν and δτ by running 500

iterations and observing the acceptance rate. If the acceptance rate turns out to fall

between 0.3 and 0.6, then the values of δv and δτ are retained for running a subsequent

MCMC chain.

4 Meta-elliptical Distribution

A typical application of elliptical copulas is to construct meta-elliptical distributions (Fang

et al. (2002)). The marginal distributions of elliptical distributions are also elliptical. How-

ever, in practice, for modeling multi-dimensional data with arbitrary continuous margins,

a good choice is to use meta-elliptical distributions. Such a distribution consists of an ellip-

tical copula and a collection of arbitrarily chosen continuous margins, i.e., the dependence

structure is induced by an elliptical copula while the marginal distributions can be chosen

by the data analyst.

A d-dimensional meta-elliptical distribution is denoted byME(Ω, g;F1, . . . , Fd), where

Ω is a correlation matrix, g is a copula generator and F1, . . . , Fd are marginal CDFs. The

joint CDF of a meta-elliptical distribution is

FME(x1, . . . , xd) = C {F1(x1), . . . , Fd(xd)} ,

where C is the CDF of the elliptical copula C(Ω, g). Given that C is absolutely continuous,

the PDF of ME is given by

fME(x1, . . . , xd) = c {F1(x1), . . . , Fd(xd)}
d∏
`=1

f`(x`),
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where c is the PDF of C(Ω, g) and the f` are the marginal PDFs. The estimation of a meta-

elliptical distribution consists of estimating the marginal distributions and the underlying

copula separately. Suppose we wish to analyze a data set with N observations from a

meta-elliptical distribution ME(Ω, g;F1, . . . , Fd), where the data are denoted as follows,
x>1
...

x>N

 =


x11 . . . x1d

...
. . .

...

xN1 . . . xNd

 . (23)

The marginal distributions are estimated first. There are many ways to estimate F1, . . . , Fd,

such as normal mixtures, Gamma mixtures, kernel densities, empirical cumulative distri-

bution functions, etc. In the application of Section 7, we use normal mixtures and kernel

densities to estimate the marginal distributions. Given the estimated marginal CDFs,

F̂1, . . . , F̂d, we apply the probability integral transform to the data (23),

uij = F̂j(xij), {j = 1, . . . , d; i = 1, . . . , N}

to obtain the pseudo data 
u>1
...

u>N

 =


u11 . . . u1d

...
. . .

...

uN1 . . . uNd

 . (24)

The copula data (24) can be viewed as coming from an elliptical copula C(Ω, g), which is

the copula ofME(Ω, g;F1, . . . , Fd). The rest of the estimation is performed on the copula

data. Our simulation studies in Section 5 are performed directly on copula data.

5 Simulation Study for the Bivariate Case

For the bivariate case, we use the Student-t copula as well as five other elliptical copulas

from Derumigny and Fermanian (2022) having the following generators (before normaliza-

tion and standardization):
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1. g(t) = 1/(1 + t2),

2. g(t) = exp(−t),

3. g(t) = exp(−t) + bump(t), where bump(x) = (x− 1)(1 + π − x) sin(x− 1)I[1,1+π](x)

is a smooth function supported on [1, 1 + π],

4. g(t) = exp(−t) + exp(−t/3) cos2(t),

5. g(t) = (1 + t/ν)−(ν+d)/2, where ν = 5, which is a Student-t copula with 5 degrees of

freedom,

6. g(t) = t2 exp(−t2).

The correlation matrix is fixed throughout the simulations and is given by

Ω =

 1 0.2

0.2 1


for all six cases.

To sample from an elliptical copula, we sample from its associated elliptical distribution

first, and then apply the probability integral transform using the marginal distribution

function. Each simulation study consists of drawing 100 independent data sets of size

N = 1000 each from a given copula. This yields 100 independent estimates of the generator

for each of the six aforementioned elliptical copulas. For each replicate, the MCMC scheme

is run for 10, 000 iterations, the first 5000 of which are used as burn-in. The posterior mean,

ĝ(t), is obtained by averaging the iterates after burn-in. The posterior mean as well as the

true underlying generator are evaluated on the interval [0, 1]. The posterior means from

the 100 replicates are plotted along with the true generators in Figure 1. For all replicates,

the differences between ĝ(t) and g(t) are calculated on a grid (t1, t2, t3, t4, t5). Figure 2

presents boxplots of the 100 absolute differences at each of these grid values.

Figure 1 demonstrates good perfomance of the proposed methodology, showing close

proximity between the true generators and their Bayesian estimates. It is seen from the
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(a) (b) (c)

(d) (e) (f)

Figure 1: The true generators, normalized and standardized (dashed lines), along with 100

posterior means, based on 100 random samples.

(a) (b) (c)

(d) (e) (f)

Figure 2: Boxplots of |g(t)− ĝ(t)| at five grid values, based on 100 random samples.
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boxplots of Figure 2 that the values of |g(t) − ĝ(t)| are larger when g(t) has sharp turns,

such as in (c) and (f). Overall, the values of |g(t)− ĝ(t)| are small, indicating good fits.

Comparison with Derumigny’s method:

Using the same datasets, we also evaluated the approach implemented in the R-package

ElliptCopulas by Derumigny and Fermanian (2022). Figures 3 and 4 present the esti-

mated generator ĝ(t) from both methods side by side.

It can be observed that the estimates obtained from ElliptCopulas exhibit greater bias,

particularly in the cases of g(t) = exp(−t)+bump(t) and g(t) = exp(−t)+exp(−t/3) cos2(t).

In the case of g(t) = t2 exp(−t2), the performance of ElliptCopulas is very unsatisfactory

which is also shown in the paper by Derumigny and Fermanian (2022). Table 2 reports the

mean integrated squared error (MISE) of the estimated generator functions for both meth-

ods. The column MISE1 corresponds to our proposed approach, while MISE2 represents

the estimates obtained using ElliptCopulas.

The results clearly demonstrate that our approach outperforms the alternative, partic-

ularly in scenarios where the generator exhibits complex patterns.

Table 2: Comparison of the Mean Integrated Squared Error (MISE) for different g(t)s using

our approach (MISE1) and the method by Derumigny and Fermanian (2022) (MISE2).

g(t) MISE1 MISE2

1/(1 + t2) 0.0016 0.0052

exp(−t) 0.0007 0.0041

exp(−t) + bump(t) 0.0139 0.0851

exp(−t) + exp(−t/3) cos2(t) 0.0032 0.0172

Student-t copula with ν = 5 0.0021 0.0076

t2 exp(−t2) 0.0035 0.0362
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Comparison of the estimated function ĝ using our proposed approach (left)

and the method by Derumigny and Fermanian (2022) (right). Each row corresponds to a

different functional form of g(t).
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Comparison of the estimated function ĝ using our proposed approach (left)

and the method by Derumigny and Fermanian (2022) (right). Each row corresponds to a

different functional form of g(t).
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Comparison with Genest’s method:

In the approach proposed by Genest et al. (2007), the data analyst creates a list of

candidate generators and tests them on a given data set to determine which one performs

best in a goodness-of-fit test. The main drawback of this method is that the true generator,

g, may not be included in the list of common generators, leading to a potentially incorrect

selection. To illustrate this issue, we present a small example. We apply Genest’s method

to two copula data sets used previously, i.e., the one with g(t) = 1/(1 + t2) and the one

with g(t) = exp(−t) + exp(−t/3) cos2(t). We assume the copula is either Gaussian or

Student-t with some degrees of freedom. For estimation, we use the Matlab function

copulafit, which operates similarly to Genest’s method. The generator g(t) = 1/(1 + t2)

is similar to the generators of the Gaussian copula and the Student-t copula. In this

case, we correctly identify the generator, as shown by Figure 5 (a), where the estimated

generators and the true one almost overlap. However, when the true generator is g(t) =

exp(−t) + exp(−t/3) cos2(t), which is not included in our candidate list, the resulting

estimate is very inaccurate, as shown in Figure 5 (b). By contrast, our method yields a

much better estimate, as shown in Figure 1 (d).

(a) (b)

Figure 5: The true generators, normalized and standardized (dashed lines), along with

estimates with a Gaussian copula (solid line) and a Student-t copula (dash-dotted line),
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6 Higher Dimensions

When applied directly, our approach does not produce satisfactory results in simulation

studies for cases where d > 2. A possible explanation is that certain regions of fY exhibit

very large first derivatives (in absolute value) as the dimension of the elliptical copula

increases, as illustrated in Figure 6. This issue cannot be mitigated by adjusting the value

of a in Equation (14). However, this may not be a significant concern, as noted in Remark 3

of Derumigny and Fermanian (2022). If Ud ∼ C(Ω, g), then any two-dimensional subvector

of Ud follows an elliptical copula with the same generator g. Therefore, given data from

an elliptical copula of a higher dimension, we can estimate its generator using only a 2-

dimensional subset of the data. Next, we apply this method to estimate the generator of a

5-dimensional Gaussian copula.

Figure 6: The PDF fY (t) for Gaussian copulas of different dimensions.

We generate N = 1000 observations from a 5-dimensional Gaussian copula with corre-

lation matrix

Ω =



1 0.2 0 0 0

0.2 1 0.2 0 0

0 0.2 1 0.2 0

0 0 0.2 1 0.2

0 0 0 0.2 1


assumed known. We then obtain a 2-dimensional subset of the copula data to estimate the

generator g. The MCMC settings are as in Section 5 except that we have only used 50
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independent data sets this time. From the “spaghetti” plot and boxplot in Figure 7, we

can see that the fit is very good.

(a) (b)

Figure 7: The true generator of a 5-dimensional Gaussian copula, normalized and stan-

dardized (dashed black lines), along with 50 posterior means, and boxplots of |g(t)− ĝ(t)|

at five grid values, based on 50 random samples.

7 Application

7.1 Wine Data

The wine quality data (Cortez and Reis, 2009) contain two datasets, having to do with

red and white variants of the Portuguese “Vinho Verde” wine. The data are taken from

the UC irvine Machine Learning Repository. They contain various variables such as citric

acid level, pH level, density, and sulphates, measured from distinct 1599 red and 4898

white wine examples, from May 2004 to February 2007. The data are also available in the

supplementary material. In our analysis we focus on modeling the dependence between

variables of the red wine data. In particular, we use an elliptical copula to model the

dependence between citric acid (citricAcid) and pH level (pH) where the joint distribution

of citricAcid and pH is assumed to be meta-elliptical. The histograms in Figure 8a and

8b show that the marginal distribution of citric acid is multi-modal while that of pH is
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bell-shaped.

(a) Citric acid. (b) pH.

(c) citric acid copula data. (d) pH copula data.

Figure 8: Histograms of citric acid and pH along with their copula data.

7.2 Estimation and Results

We estimate the marginal distributions of citricAcid and pH first, using empirical cdfs,

and then use the probability integral transform to obtain copula data. In particular,

U = F̂citric(citricAcid), V = F̂pH(pH),

where F̂citric and F̂pH are empirical CDFs. The marginal histograms of the copula data

appear in Figure 8c and 8d. These histograms look close to uniform, as expected. A

bivariate histogram is presented in Figure 9a.

To estimate the correlation matrix Ω, we first compute the sample Kendall’s tau and

then convert it into the Pearson correlation using the transformation ρ = sin(π∗τ/2). This
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(a) Histogram of the copula

data.

(b) Fitted copula density

overlaid on the histogram of

the copula data.

(c) Density histogram of

S
(B)
n .

Figure 9: Density histogram of the copula data, fitted copula density and a density his-

togram of the goodness of fit measure.

results in

Ω̂ =

 1 −0.57

−0.57 1

 .
Thus, in the ensuing MCMC scheme, we only estimate the copula generator. The MCMC

scheme is run for 10, 000 iterations where the first 5000 are used as burn-in. The results are

presented in Figure 9b. The estimated copula PDF and generator are the posterior means

computed based on the iterations after burn-in. It is evident that the method provides a

good fit to the data.

We also evaluate goodness of fit using the S
(B)
n statistic from Genest et al. (2009), which

is computed via Rosenblatt’s probability integral transform (Rosenblatt (1952)). Figure 9c

shows a density histogram of the S
(B)
n values computed at each MCMC iteration after

burn-in. The 99%th empirical quantile of these values is equal to 0.1049, which indicates

a good fit of the estimated elliptical copula to the wine data.
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8 Conclusion and discussion

We have proposed a new inferential procedure to estimate generators of elliptical copulas

in a Bayesian framework, which exhibits good results in simulation studies. A more the-

oretical study of the formulation of elliptical copulas may be a topic of further research.

Elliptical copula generators are not unique and identifiable because they contain abundant

information on the marginal distributions. Elliptical copulas may have a better param-

eterization which only includes information on dependence structures. Future work may

examine more elegant formulations for elliptical copulas instead of simply utilizing their

associated elliptical distributions and the inversion method.

Disclosure

The authors report there are no competing interests to declare.

SUPPLEMENTARY MATERIAL

Appendix: A pdf file, describing the construction of B-spline densities and the algorithm

to sample an elliptical copula.

EllipCopEst2D: A zipped file, containing Matlab code and a “ReadMe” file to illustrate

the methods described in the article.

Wine quality data set: Data set used in the application. (.csv file)

References

Abdous, B., Genest, C., and Rémillard, B. (2005), “Dependence properties of meta-

elliptical distributions,” in Statistical modeling and analysis for complex data prob-

27



lems , volume 1 of GERAD 25th Anniv. Ser., Springer, New York, 1–15, URL https:

//doi.org/10.1007/0-387-24555-3_1.

Cambanis, S., Huang, S., and Simons, G. (1981), “On the theory of elliptically contoured

distributions,” J. Multivariate Anal., 11, 368–385, URL https://doi.org/10.1016/

0047-259X(81)90082-8.

Chib, S. and Jeliazkov, I. (2006), “Inference in semiparametric dynamic models for binary

longitudinal data,” J. Amer. Statist. Assoc., 101, 685–700, URL https://doi.org/10.

1198/016214505000000871.

Cortez, Paulo, C. A. A. F. M. T. and Reis, J. (2009), “Wine Quality,” UCI Machine

Learning Repository. DOI: https://doi.org/10.24432/C56S3T.

de Boor, C. (1978), A practical guide to splines , volume 27 of Applied Mathematical Sci-

ences , Springer-Verlag, New York-Berlin.

Derumigny, A. and Fermanian, J.-D. (2022), “Identifiability and estimation of meta-

elliptical copula generators,” J. Multivariate Anal., 190, Paper No. 104962, 19, URL

https://doi.org/10.1016/j.jmva.2022.104962.

Eilers, P. and Marx, B. (2021), Practical smoothing: the joys of p-splines , Cambridge

University Press, URL https://books.google.com/books?id=ez0QEAAAQBAJ.

Eilers, P. H. C. and Marx, B. D. (1996), “Flexible smoothing with B-splines and penal-

ties,” Statist. Sci., 11, 89–121, URL https://doi.org/10.1214/ss/1038425655. With

comments and a rejoinder by the authors.

Fang, H.-B., Fang, K.-T., and Kotz, S. (2002), “The meta-elliptical distributions with

given marginals,” J. Multivariate Anal., 82, 1–16, URL https://doi.org/10.1006/

jmva.2001.2017.

28



— (2005), “Corrigendum to: “The meta-elliptical distributions with given marginals” [J.

Multivariate Anal. 82 (2002), no. 1, 1–16; MR1918612],” J. Multivariate Anal., 94, 222–

223, URL https://doi.org/10.1016/j.jmva.2004.10.001.

Gelman, A. (2006), “Prior distributions for variance parameters in hierarchical models

(comment on article by Browne and Draper),” Bayesian Anal., 1, 515–533, URL https:

//doi.org/10.1214/06-BA117A.

Genest, C., Favre, A.-C., Béliveau, J., and Jacques, C. (2007), “Metaelliptical copulas

and their use in frequency analysis of multivariate hydrological data,” Water Resources

Research, 43.

Genest, C., Rémillard, B., and Beaudoin, D. (2009), “Goodness-of-fit tests for copulas:

a review and a power study,” Insurance Math. Econom., 44, 199–213, URL https:

//doi.org/10.1016/j.insmatheco.2007.10.005.

Ghidey, W., Lesaffre, E., and Eilers, P. (2004), “Smooth random effects distribution in

a linear mixed model,” Biometrics , 60, 945–953, URL https://doi.org/10.1111/j.

0006-341X.2004.00250.x.
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