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In many practical problems, time series are realizations of nonstationary random processes.

These processes can often be modeled as processes with slowly changing dynamics or as piecewise

stationary processes. In these cases, various approaches to estimating the time-varying spectral

density have been proposed. Our approach in this paper is to estimate the log of the Dahlhaus local

spectrum using a Bayesian mixture of splines. The basic idea of our approach is to first partition the

data into small sections. We then assume that the log spectral density of the evolutionary process

in any given partition is a mixture of individual log spectra. We use a mixture of smoothing splines

model with time varying mixing weights to estimate the evolutionary log spectrum. The mixture

model is fit using Markov chain Monte Carlo techniques that yield estimates of the log spectra of

the individual subsections. In addition to an estimate of the local log spectral density, the method

yields pointwise credible intervals. We use a reversible jump step to automatically determine the

number of different spectral components.

Key Words: Evolutionary spectra; Locally stationary time series; Mixture of splines; Reversible

jump MCMC.

1 Introduction

In many practical problems, the spectral analysis of time series that are realizations of nonstationary

random processes is of interest. For example, analyzing the Southern Oscillation Index (SOI) time

series is important in monitoring global climate change and predicting rainfall. Priestley (1965) was

the first to introduce the concept of evolutionary spectra and a Cramér representation with a time-

varying transfer function. This idea was later refined by Dahlhaus (1997) where he established
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an asymptotic framework for locally stationary processes. The definition of a Dahlhaus locally

stationary process will be given in the next section, but throughout the remainder of this section,

we use the term locally stationary in a generic sense.

Several authors have considered the estimation of locally stationary processes under a variety

of assumptions. The estimators that were developed by Dahlhaus for his evolutionary spectra are

consistent, but the method is not computationally efficient and can be problematic when the time

series is long. Chiann and Morettin (1999) proposed a wavelet based version of the estimator pro-

posed by Dahlhaus. Various other approaches have been suggested to overcome the computational

difficulty. Ombao et al. (2001) proposed nonparametric estimators based on smooth local exponen-

tial functions. Guo et al. (2003) extended the work of Ombao et al. (2001) to allow for simultaneous

smoothing in both the time and frequency domains. Our primary goal is to establish a Bayesian

approach for estimating the time-varying spectrum of a Dahlhaus locally stationary process in a

semi-automatic fashion. We will make our goal more precise in the next section.

Another approach to analyzing locally stationary time series is to consider fitting piecewise au-

toregressive (AR) models; this approach was suggested by Kitagawa and Akaike (1978). Recently

Davis, Lee and Rodriguez-Yam (2006) suggested fitting piecewise AR models using minimum de-

scription length and a genetic algorithm for solving the difficult optimization problem. Although

Davis et al. (2006) showed that their simulation results for a few locally (and piecewise) stationary

AR models perform better than those of Ombao et al. (2001), it is clear that, generally, a paramet-

ric technique will outperform a nonparametric technique when the parametric model is correct. If

an investigator is certain the dynamics generating the data are locally stationary AR models, then

we would suggest using a parametric approach. If, however, an investigator is uncertain about the

dynamics of the process, a nonparametric procedure might be preferred. Indeed, some authors, for

example Thomson (1990) in analyzing locally stationary geophysical series, warn strongly that AR

spectra can be misleading.

One of the difficulties of the non-Bayesian approaches is that they do not jointly model the

uncertainty surrounding the point estimates of the spectra and the point estimates of the number

and location of the locally stationary segments. Thus, to make inference regarding the individual

locally stationary spectra, plug-in point estimates of the number and location of the locally station-

ary segments are used. Such an approach underestimates the uncertainty surrounding estimates of

the locally stationary spectra.

Bayesian approaches to modeling nonstationary time series include Lavielle (1998) and Punskaya

et al. (2002). Punskaya et al. (2002) proposed a Bayesian method for fitting piecewise linear

regression models like AR models. Their method is based on placing prior distributions on the

number of changepoints, their locations and the order of the linear regression in each segment.

The method is implemented via reversible jump MCMC methods. Unlike the work of Punskaya et

al. (2002), our approach is nonparametric.
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There are four main contributions of our paper. First we present a novel method of modeling

the time varying log spectral density using a mixture of a finite but unknown number of individual

log spectra, where the mixture weights of the individual log spectra vary with time. The basic

idea of our approach is to first partition the data into small sections. We then assume that in

any given partition, the log spectral density of the process is a mixture of individual log spectra.

We introduce nonstationarity into our model by allowing the mixing weights of the individual log

spectra to change smoothly across partitions.

The second contribution is that we perform model averaging rather than model selection by

allowing the number of underlying individual spectra to be unknown and to vary from j = 1, . . . , J .

To this end, we construct a Markov chain Monte Carlo (MCMC) scheme using the reversible jump

method of Green (1995) to move between models of varying numbers of components. Thus, our

resulting estimate of the time varying log spectra is averaged across models of varying numbers of

components.

The third contribution of our paper is that we use the output from the MCMC scheme not

only to estimate but also to make inference regarding the time varying log spectra, the number of

underlying locally stationary spectra and the location and rate at which the time series changes

from one locally stationary process to another.

Finally, segmentation methods such as those mentioned in our introduction are entirely local

in that estimates are based only on the data in the segment (with perhaps some small overlap

from contiguous segments). Our method uses all of the data in the estimation and inference

procedures. For example, in Section 7.2, we will analyze seismic data. In those examples, the

signals are amplitude modulated wherein the strength of a signal may vary over time but the

frequencies remain constant. Any existing segmentation method would ignore this fact and simply

base its estimates on the data in each segment. Our method will recognize the fact that there are

similarities in the signals over the entire sample and will use the information in all of the data to

estimate the evolutionary spectrum.

2 Locally Stationary Time Series

The Dahlhaus (1997) approach to modeling evolutionary spectra is based on a time dependent ana-

log to the classical Cramér spectral representation of stationary processes. The following definition

is for the case of a zero-mean process.
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Definition 2.1 (Dahlhaus) A sequence of zero-mean stochastic processes, {Xt,N ; t = 1, . . . , N},
for N ≥ 1, is called locally stationary with transfer function A0 if there exists a representation

Xt,N =

∫ 1/2

−1/2
A0

t,N (ν) exp(i2πνt) dZ(ν) , (1)

where

(i) Z(ν) is a zero mean orthogonal increment process on [−1/2, 1/2];

(ii) There exists a positive constant K and a smooth function A : [0, 1] × [−1/2, 1/2] → C with

A(u, ν) = A(u,−ν) such that for all N ,

sup
t,ν

|A0
t,N (ν) − A(t/N, ν)| ≤ K N−1; (2)

(iii) For all ν, A(u, ν) is continuous in u.

The Dahlhaus evolutionary spectrum can then be defined as follows.

Definition 2.2 (Dahlhaus) The evolutionary spectrum of a Dahlhaus locally stationary process

at time u ∈ [0, 1] and frequency ν ∈ [−1/2, 1/2] is given by f(u, ν) = |A(u, ν)|2.

We refer the reader to Dahlhaus (1997) for examples of processes satisfying Definition 2.1.

Note that the first argument of A(u, ν) is rescaled to live on the unit interval and increasing the

number of observations, N , means we allow for more data to be observed locally in the sense of

infill asymptotics, rather than in the sense of increasing domain asymptotics, i.e., observing more

data in the future. Equation (2) deals with the smoothness of A in u such that it is allowed to

change only slowly over time. The idea behind this is essentially that for each fixed N , we implicitly

assume some local interval of stationarity about each time point and a smooth change from one

interval to the next.

Because a Dahlhaus locally stationary process changes smoothly in time, u, we may approximate

the evolutionary spectrum by a piecewise stationary process as follows. For a fixed N , consider a

partition of the unit interval into S segments of equal length chosen in such a way that n = N/S

is small relative to N . We denote the corresponding intervals by Is = ( s−1
S , s

S ], for s = 1, . . . , S.

Next, we define the piecewise stationary process

X̃t,N =
S∑

s=1

Xs,t′ δ(t/N, Is), (3)

where t′ = 1, . . . , n [i.e., t′ = (t − 1) (mod n) + 1], and where δ(t/N, Is) = 1 if t/N ∈ Is and

δ(t/N, Is) = 0 if t/N /∈ Is. The stationary process Xs,t′ is defined to have a spectral density f̃s(ν),

which is given by averaging the evolutionary spectrum in that interval; i.e.,

f̃s(ν) =
1

S

∫

u∈Is

f(u, ν) du (4)
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for s = 1, . . . , S.

In the asymptotics, we may let S → ∞, but S/N → 0 as N → ∞. Hence, because of the

smoothness of A(u, ν) in u, the local spectral density of X̃t,N , namely f̃s(ν) for t/N ∈ Is, and

s = 1, . . . , S, well approximates the evolutionary spectrum, f(u, ν), of Xt,N , provided N and S are

sufficiently large. In addition, Ombao et al. (2001, Theorem 1) argue that under mild conditions,

locally stationary processes can be well approximated by piecewise stationary processes in the sense

that the average mean square error between Xt,N and X̃t,N is O(n2/N2).

Our general technique relies on the approximation given by (3)–(4). To make our technique

easier to understand, however, we first describe the case for a stationary process in the next section.

After the stationary case has been discussed, we will then describe our technique for the Dahlhaus

locally stationary case in the subsequent sections.

3 Spectral Estimation for Stationary Time Series

As previously indicated, our general approach to the problem of estimating local spectra is best

understood by first explaining the technique for estimating the spectral density of a stationary

process.

3.1 Model

Suppose that a stationary time series, {Xt}, has a spectral density given by f(ν), for −1/2 < ν ≤
1/2. We assume that f(ν) is bounded and positive. Given a realization, x1, . . . , xn, the periodogram

of the data at frequency ν (measured in cycles per unit time) is

In(ν) =
1

n

∣∣∣∣∣

n∑

t=1

xt exp(−2πiνt)

∣∣∣∣∣

2

.

Let νk = k/n, for k = 0, . . . , n − 1, be the Fourier frequencies. Whittle (1957) showed that, under

appropriate conditions, for large n, the likelihood of x = (x1, . . . , xn) can be approximated as

p(x
∣∣ f) ∝

n−1∏

k=0

exp

{
−1

2

[
log f(νk) + In(νk)/f(νk)

]}
. (5)

Let yn(νk) be the log of the periodogram evaluated at the Fourier frequencies, then the represen-

tation in (5) suggests the log-linear model

yn(νk) = log f(νk) + ǫk , (6)

where yn(νk) = log In(νk) for k = 0, . . . , [n/2], where [n/2] is the largest integer less than or

equal n/2, the ǫk’s are independent, ǫk ∼ log(χ2
2/2) for k = 1, . . . , [n/2] − 1, and ǫk ∼ log(χ2

1) for
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k = 0, [n/2]. Note that in (5), there are only [n/2] + 1 distinct observations since the spectral

density and the periodogram are both even functions of ν. For ease of notation, in what follows,

we assume that n is even.

It is seen from (6) that the log spectral density can be estimated nonparametrically with the log

periodogram as the dependent variable. Wahba (1980) used a frequentist approach for estimating

the log spectral density via cubic smoothing splines. Carter and Kohn (1997) used a Bayesian

approach to modeling the log spectral density as cubic smoothing splines as well by expressing

equation (6) in a state-space form. They approximated the error distribution in (6) by a mixture of

five normal distributions and introduced latent component indicators to facilitate the estimation.

3.2 Priors

Let g(νk) = log f(νk). To place a prior on g(νk) we follow Wahba (1990, p. 16) and express g(νk)

as the sum of its linear and nonlinear components, so that

g(νk) = α0 + α1νk + h(νk) ,

where h(νk) is the nonlinear component. We place a smoothing spline prior on h(ν), which means

that h(ν) is a zero mean Gaussian process with variance-covariance matrix τ2Ω, where the ij-th

element of Ω is given by

cov(h(νi), h(νj)) = τ2ωij ,

where τ2 is the smoothing parameter and

ωij = ν2
i (νj − νi/3)/2, νi ≤ νj .

The parameters α0 and α1 are the value of the log of spectral density and its first derivative at ν = 0

respectively. The symmetry and periodicity of the spectral density mean that (∂ log f(ν)/∂ν)|ν=0 =

0. Accordingly α1 is set to be identically zero and the prior on α0 is N(0, cα), for some large cα.

To complete the prior specification on g(ν), we assume p(τ2) ∝ 1/τ2.

To facilitate the computations we follow Wood, Jiang and Tanner (2002) and write hhh =

(h(ν0), . . . , h(νn/2))
′ as a linear combination of basis functions so that hhh = Xβββ, where the columns

of the design matrix X are the Demmler-Reinsch basis functions evaluated at the Fourier frequen-

cies and βββ is an (n/2+1)×1 vector of regression coefficients. These basis functions are constructed

by decomposing Ω as Ω = QDQ′, where Q is the matrix of eigenvectors of Ω, and D is a diagonal

matrix containing the eigenvalues of Ω. Letting X = QD1/2 and setting the prior on β to be

p(β) ∼ N(0, τ2I(n/2+1)), we have Xβββ ∼ N(0, τ2Ω) as required. In practice, one can retain only

the columns of X corresponding to the largest eigenvalues of Ω resulting in computational saving

without affecting the fit. The model in (6) can now be expressed as

y = α0111 + Xβ + ǫ ,
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where 111 is an (n/2 + 1) × 1 vector of ones and ǫ = (ǫ0, . . . , ǫn/2)
′ with the ǫk’s distributed as in

(6). Note that this is the same model as in Carter and Kohn (1997). Both this paper and Carter

and Kohn (1997) assume a smoothing spline prior on the log spectral density. We chose a different

representation of this prior for ease of computation and to avoid the introduction of the latent

component indicators used by Carter and Kohn (1997).

4 Spectral Estimation for Locally Stationary Time Series

In this section, we generalize the spectral analysis of stationary time series described in Section 3

to time series that are Dahlhaus locally stationary as defined in Section 2. Given observations

{Xt,N ; t = 1, ..., N} from a Dahlhaus locally stationary process with evolutionary spectrum f(u, ν),

we consider the approximation process {X̃t,N ; t = 1, ..., N} defined in (3). In particular, given a

segmentation S, we form the partitioned data {Xs,t′ ; t′ = 1, . . . , n; s = 1, . . . , S} as described in

(3). Our goal is to use the partitioned data to estimate the local spectra, f̃s(ν), as specified in (4),

for s = 1, . . . , S and to use the estimated local spectra as an estimate of the evolutionary spectrum

f(u, ν). The choice of the number of segments, S, will be discussed after we present the model,

but the basic idea is that the finer the partition of the unit time interval, the better the estimate

of the evolutionary spectrum.

One obvious but primitive approach to this analysis is to estimate the local spectra, f̃s(ν),

individually in each segment s = 1, . . . , S using the techniques presented in Section 3. Although

this approach may be viable if, in fact, the data are Dahlhaus locally stationary and changing

slowly over time, we would like to have an approach that is more robust to departures from this

assumption. For example, if the process of interest is piecewise stationary, its time-varying spectra

is not smooth and may make jumps at certain time points. If we segment such a process in

such a way that a particular partition contains a jump, assuming the data are stationary in that

segment will lead to a bad estimate. Another problem with the primitive method, as with all of

the segmentation methods previously mentioned, is that it does not use the information from all

of the data (or even data in contiguous segments), but rather only from the data in that segment.

To overcome these drawbacks, our strategy is to model evolutionary spectra as a mixture of an

unknown but finite number of spectra. We make these ideas precise in the following subsection.

4.1 Model

Given a segmentation S, our goal is the estimation of gs(ν) = log f̃s(ν). To this end, we first

calculate the periodogram corresponding to each segment. Let ys = (ys,0, . . . , ys,n/2)
′ be the log-

periodogram for segment s, s = 1, . . . , S, evaluated at the Fourier frequencies. We model these
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observations as

ys,k = gs(νk) + ǫk

where gs(ν) is the log of the spectral density for segment s, for s = 1, . . . S, and the ǫk’s for

k = 0, . . . , [n/2] are distributed as in (6). We model gs(ν) as a mixture of an unknown but finite

number of spectra so that

gs(ν) =

J∑

j=1

gjs(ν) Pr(j),

where J is the maximum number of components, Pr(j) is the prior probability that the mixture

contains j components, and gjs(ν) is the log of the spectral density of a mixture of j components

in segment s. For a given number of mixture components j and segment s we model gjs(ν) as

gjs(ν) =

j∑

r=1

πrjs log frj(ν) ,

where frj(ν) is the spectral density of the rth component and πrjs is the unknown weight assigned

to the rth component in segment s, with
∑j

r=1 πrjs = 1. Note that the spectral density frj(ν)

is common to all segments. The value of πrjs represents the probability that in a mixture of j

components, the data in segment s have spectral density frj(ν). A key point to note is that these

probabilities are parameterized to depend upon the segment s and are modeled using a multinomial

logistic regression to be specified in Section 4.5. This means that, although the component spectra

are common to all segments, a time varying estimate of the spectral density is obtained by allowing

the weights of the common spectra to change across segments.

4.2 Segmentation

It is important to note that the choice of the number of segments, S, is not crucial to our estimation

process subject to certain constraints. In theory there are potentially as many segments as there

are data points. However, practically, we need a minimum number of observations in each segment

to estimate the spectral density and for the Whittle approximation to the likelihood to hold. In

simulations, we found that using a minimum of 64 observations in each segment gave reasonable

results, i.e., the estimates are qualitatively close to the actual values, if the true local spectra have

well separated peaks. If an investigator is interested in a finer grid of frequencies, however, then

he/she may choose a larger (but relatively small) number of observations in a segment.

Many nonparametric local techniques, including the adaptive techniques that rely on orthogonal

libraries and use entropy-based basis algorithms such as the Best Basis Algorithm of Coifman

and Wickerhauser (1992), use an arbitrary maximum level of segmentation of the unit interval to

initialize the local analysis. In addition, most of these techniques use dyadic segmentation for ease;

by dyadic segmentation we mean intervals of [0, 1] of the form (k2−j , (k +1)2−j), k = 0, . . . , 2j − 1,
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Figure 1: True (solid lines) and estimates (dashed lines) of the log spectral density. The left panel
shows log(f12) which is the log of the spectral density of the time series xt = 0.9xt−1 + ǫt. The
right panel shows log(f22), the log of the spectral density for xt = −0.9xt−1 + ǫt.

for levels j = 1, 2, . . . J , where J is the maximum level. Although our method also requires picking

a maximal segmentation through the choice of S, it is not crucial that the segmentation be dyadic.

Finally, but perhaps most importantly, is that the parameters of the mixing function πrjs in

our model are of more importance than the number of segments because these parameters control

the location and rate at which the time series moves from one stationary process to another. The

prior on these parameters is discussed in Section 4.5, and the sampling scheme used to explore the

posterior distributions of these parameters is described in Section 5.

4.3 An Example

To illustrate our proposed method, consider a time series of length 1024 generated from the following

piecewise stationary model

xt =





0.9xt−1 + ǫt if 1 ≤ t ≤ 450

−0.9xt−1 + ǫt if 451 ≤ t ≤ 1024 ,

where ǫt ∼ N(0, 1). For illustrative purposes, suppose we know that there are two components

(i.e., Pr(j = 2) = 1). We first divide the time series into non-overlapping segments each containing

n = 64 data points. This gives a total of S = 16 segments. Our estimate of the log spectra in

segment s for s = 1, . . . 16 is

g2s(ν) = π12s log f12(ν) + (1 − π12s) log f22(ν) . (7)
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Figure 2: Estimate of the mixing function π12s in (7) based on 16 segments.

Figure 1 shows the true (solid line) and estimated (dashed line) log spectral density for xt =

0.9xt−1 + ǫt (left panel) and for xt = −0.9xt−1 + ǫt (right panel), ǫt ∼ N(0, 1). Figure 2 plots the

estimated mixing function π12s as a function of the segment. This figure shows that the probability

that the data have spectral density f12(ν) is close to 0.91 at the beginning of the time series. This

probability decreases to 0.5 by the 7th segment and is approximately 0.03 by the end of the time

series.

4.4 Prior on the Component Spectra

As in Section 3.2, we express log frj(ν) as

log frj(νk) = α0rj + hrj(νk)

and write hhhrj = Xβββrj . The priors on βββrj , and on α0rj for r = 1, . . . , j and j = 1, . . . , J are as

given in Section 3.2, and are assumed to be independent across all r and j. The prior on τ2
rj is as

in Section 3.2, and in addition we impose an ordering on τ2
rj for r = 1, . . . , j and j = 1, . . . , J , so

that for a given j, τ2
1j >, . . . , > τ2

jj . This ensures that the likelihood is identified.

4.5 Prior on the Mixing Probabilities

The mixing probabilities are expressed using the multinomial linear logit model so that

πrjs =
exp(δ′

rjus)
∑j

h=1 exp(δ′

hjus)
(8)
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with parameters δrj , r = 1, . . . , j and j = 1, . . . , J . In (8), us = (1, us)
′, where the covariate us

is taken as us = s/S, and δrj = (δ0rj , δ1rj)
′. For identifiability, δ1j is set to zero. Such logistic

weights are also used in the mixtures-of-experts model (Jacobs et al., 1991). The priors on δδδrj

for r = 1, . . . , j and j = 1, . . . , J are bivariate normal with zero mean and variance σ2
δI2 and are

assumed independent across all r and j. In all of our analyses, σ2
δ was equal to 4.

4.6 Prior on the number of components, j

Typically, we assume a priori that the maximum number of components is J and that Pr(j = k) =

1/J for k = 1, . . . , J . In the simulated examples of Section 6, J was set to 10, whereas in the real

examples of Section 7, J was set to 20. We do, however, consider the use of Poisson priors in the

example of Section 7.1.

5 Bayesian Inference

We estimate the log of the spectral density in segment s, for s = 1, . . . S by its posterior mean

E(gs|y), with all unknown parameters integrated out and we use MCMC to perform the required

multidimensional integration.

The expectation E{gs(ν)|y} is defined as

E{gs(ν)|y} =

J∑

j=1

∫
E{gs(ν)|y, θθθj , j}p(θθθj |y, j)dθθθj Pr(j|y)

where θθθj = (α′

j , β
′

j , τττ
′

j , δ
′

j)
′, αj = (α01, . . . , α0j)

′, βj = (βββ′

1j , . . . , βββ
′

jj)
′, τττ j = (τ2

1j , . . . , τ
2
jj)

′ and

δj = (δ′

2j , . . . , δ
′

jj). This integral cannot be evaluated explicitly and we use MCMC simulation

to estimate it. In addition to the point estimates, we construct (1 − α)-level pointwise credible

intervals for the log spectra by obtaining the α/2 and 1 − α/2 percentiles of the MCMC fitted log

spectra based on all the iterates after the burn-in period. Note that these credible intervals reflect

the uncertainty surrounding not only our estimate of log frj but also our uncertainty surrounding

the number of components J and the mixing probabilities πrsj .

To simplify the simulation from the posterior distribution p(θθθj , j|y), we introduce latent vari-

ables that are generated during the simulation. The first of these is the number of components j

that are active at any point in the simulation. Then, given j, define the vector of indicator variables

γsrj for s = 1, . . . , S and r = 1, . . . , j, where γsrj = 1 if ys originated from the rth component, and

γsrj = 0, otherwise.

Sampling Scheme

We outline here the MCMC scheme for our model. More details are given in the Appendix. The
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sampling scheme consists of two parts; a between-model move followed by a within-model move.

The number of components j is first initialized, then conditional on this value, the other model

parameters αj , βj , τ j and δj are initialized.

1. Between Model Move

A new value of j is proposed, and conditional on this value, parameter values for αj , βj , τ j

and δj are proposed. These proposed values are then accepted or rejected using a Metropolis-

Hastings step.

2. Within Model Move

Given the value of j, the parameters specific to a model of j components are then updated

as follows.

(a) Let β∗

rj = (αrj , β
′

rj)
′, r = 1, . . . , j, β∗

j = (β∗
′

1j , . . . ,β
∗
′

jj)
′ and X∗ = (111, X). Generate

β∗

j from p(β∗

j

∣∣ τ j , γj , X
∗, ỹ) via Metropolis-Hastings steps, where γj = {γsrj}, for

r = 1, . . . , j and s = 1, . . . , S, are the component indicators, and ỹ = (y′

1, . . . ,y
′

S)′.

(b) Generate τ j from p(τ j

∣∣ βj).

(c) Generate δj from p(δj

∣∣ γj , U) via a Metropolis-Hastings step, where U is the matrix

whose sth row is u′

s, s = 1, . . . , S.

(d) Let γsj = r if γsrj = 1. Generate the component indicators from p(γsj = r
∣∣ β∗

j , δj , X
∗,ys).

The proposal densities for generating β∗

j and δj are multivariate normal. The resulting acceptance

rates are around 30% and 80%, respectively.

6 Simulations

We conducted a simulation study using three settings, the first two of which are taken from Ombao

et al. (2001). The first is a slowly-varying AR(2) process, the second is a piecewise stationary model

and the third is a time varying AR(6) process. We generated 200 time series from the slowly-varying

AR(2) process and 50 time series from each of the other two processes. For all three settings, each

time series is of length N = 1024, divided into S = 16 segments of size n = 64. The Gibbs sampler

for our model was then run for each time series with 100,000 iterations, including a burn-in period

of 20,000 iterations. A run of 100,000 iterations takes about an hour on a 3.4 GHz Linux PC, using

Fortran 90 code.

6.1 Slowly Varying AR(2) Process

In this simulation setting, 200 realizations are generated from the model

xt = atxt−1 − 0.81xt−2 + ǫt, t = 1, . . . , 1024, (9)
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Figure 3: Top: A realization of the slowly varying AR(2) process given in (9). Bottom: The
coefficient at as a function of t for process (9) . In both figures time is rescaled to the unit interval,
n = 1024.
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Figure 4: Left: True time-varying log-spectrum of process (9). Right: Estimated log-spectrum
based on averaging the 200 fitted log-spectra

where at = 0.8(1−0.5 cos(πt/1024)) and ǫt
iid∼ N(0, 1). In this case, the process is neither piecewise

stationary, nor does it have a dyadic structure. Figure 3 shows a realization of the process (9) and

a plot of at. Note that at changes slowly as a function of t, which in turn results in a slowly-varying

spectrum as a function of t.

Figure 4 presents the true time-varying log spectrum of process (9) on the left-hand side, as

well as the average of the 200 estimated log spectra, on the right. In this figure, darker shades

correspond to higher power, and time has been rescaled to the unit interval. Each of these estimated

13



log spectra is obtained as described in Section 5. We see that our method does a good job, on

average, in estimating the true time-varying spectrum of the process. Following Ombao et al. (2001),

we use the averaged squared error (ASE) to assess the distance between the true log spectrum and

its estimate. In our notation, ASE is given by

ASE = {N(n/2 + 1)}−1
N∑

t=1

n/2∑

k=0

{
log f̂(t/N, νk) − log f(t/N, νk)

}2
, (10)

where f(·, ·) is the true time-varying spectrum, and

log f̂(t/N, νk) =
S∑

s=1

ĝs(νk) δ(t/N, Is)

where ĝs(νk) the estimate of the log of time-varying spectrum gs(νk) as discussed in Section 5

and δ(t/N, Is) is defined below (3). The average of the 200 ASE values corresponding to the 200

realizations was 0.261 with a standard deviation of 0.093. The 10th, 25th, 50th, 75th and 90th

percentiles of the 200 ASE values were 0.17, 0.20, 0.23 ,0.31 and 0.39, respectively.

To compare our method with the AutoSLEX method presented in Ombao et al. (2001), we

repeated the study using AutoSLEX. One of the inputs to the AutoSLEX method is the maximum

level of the dyadic segmentation, which determines the maximum number of segments. In this

simulation, we set the maximum level to 4, which corresponds to segments of size n = 64. The

average of the 200 ASE values in this case was 0.759 with a standard deviation of 0.070. The 10th,

25th, 50th, 75th and 90th percentiles of the 200 ASE values were 0.68, 0.72, 0.75, 0.80 and 0.84,

respectively. (We note that these results are in conflict with those reported in Ombao et al., 2001,

however, our results are based on the AutoSLEX Matlab programs obtained from one of the authors.

The calculations of ASE for our method and for AutoSLEX were performed in an identical manner.)

It is evident that our method shows a substantial improvement over AutoSLEX.

6.2 Piecewise Stationary Process

Although we assume local stationarity, our technique will also work in the case that the process is

piecewise stationary. The following is an example of the viability of our method in this case. In

this simulation setting, the time series are generated from the following model

xt =





0.9xt−1 + ǫt if 1 ≤ t ≤ 512
1.69xt−1 − 0.81xt−2 + ǫt if 513 ≤ t ≤ 768
1.32xt−1 − 0.81xt−2 + ǫt if 769 ≤ t ≤ 1024 ,

(11)

where ǫt
iid∼ N(0, 1). In model (11), the lengths of the stationary time series are powers of 2.

Figure 6 shows the true time-varying log spectrum of process (11) on the left-hand side, as well

as the average of the 50 estimated log spectra, on the right. It is clear from Figure 6 that, on

average, our technique provides a good estimate of the true piecewise spectra in this example.
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Figure 5: From left to right, individual log-spectrum estimates corresponding to the 10th, 50th and
90th percentiles of the 200 ASE values for process (9)
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Figure 6: Left: True time-varying log-spectrum of process (11). Right: Estimated log-spectrum
based on averaging the 50 fitted log-spectra

6.3 Time Varying AR(6) Process

In this example, we generate 50 realizations, each of length N = 1024, from a time varying autore-

gressive process of lag 6. In particular, this process can be expressed as φt(B)xt = ǫt, ǫt
iid∼ N(0, 1),

where Bmxt = xt−m, and

φt(B) = 1 − φt1B − . . . − φt6B
6 . (12)
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Figure 7: Left: True time-varying log-spectrum of process based on (12). Middle: Estimated log-
spectrum based on averaging the 50 fitted log-spectra. Right: Estimated log-spectrum based on a
single realization

Assume the characteristic polynomial in (12) has three pairs of conjugate complex roots (a−1
tj , a∗−1

tj ),

j = 1, 2, 3, where the superscript ∗ denotes the complex conjugate, i.e.,

φt(B) = (1 − at1B)(1 − a∗t1B)(1 − at2B)(1 − a∗t2B)(1 − at3B)(1 − a∗t3B) .

To make these roots vary with time, let a−1
tj = Aj exp(2πiθtj), j = 1, 2, 3, where i =

√
−1, and let

the θtjs satisfy

θt1 = .05 + (.1/(N − 1))t
θt2 = .25
θt3 = .45 − (.1/(N − 1))t,

for t = 1, . . . , N . The values of A1, A2 and A3 are 1.1, 1.12 and 1.1, respectively. The corre-

sponding coefficients, φtj , t = 1, . . . , N , j = 1, . . . , 6, are obtained as the negative coefficients of the

polynomial in (12).

We fitted our method to each of the 50 realizations. Figure 7 presents the true time varying

log-spectrum on the left-hand side, the average of the 50 estimated log-spectra, in the middle, and

an estimated log-spectrum based on a single realization. From these plots, it is evident that our

method provides good estimates of the true time varying spectrum.

7 Applications

In this section, we give two examples to illustrate our methodology. The total number of iterations

is 300,000 in the first example and 400,000 in the second.
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7.1 Southern Oscillation Index (SOI)

In recent years there has been much research and debate on climate change. One area of research

is the El Niño/Southern Oscillation (ENSO) phenomenon. ENSO is an irregular low frequency

oscillation between a warm El Niño state and a cold La Niña state. The Southern Oscillation

Index (SOI) is an indicator of the ENSO phenomenon and is calculated to be the standardized

anomaly of the mean sea-level pressure difference between Tahiti and Darwin. The strong El Niños

of 1982/83 together with the more frequent occurrences of El Niño in recent decades have raised

the question of whether human-induced global warming has changed the structure of the ENSO

time series. (Timmermann et al., 1999). Trenberth and Hoar (1996) used quarterly standardized

seasonal Sea Level Pressure Anomalies at Darwin (DSLPA) as an indicator of ENSO and assumed

an ARMA(3,1) model as the data-generating process. They tested explicitly for a change in the

time series from 1981 onwards and found that given the values of the index from 1882-1981, the

likelihood of observing the 1990-1995 ENSO is about 1:3000 years. The SOI is considered to be

a better indicator of ENSO than the DSLPA (Chen, 1982) and therefore we use this index as our

data.

The data, shown in Figure 8, are monthly values of the SOI from January 1876 to April 2008

and are available at http://www.bom.gov.au/climate/current/soihtm1.shtml.
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Figure 8: Monthly values of the Southern Oscillation Index (SOI) from January 1876 to April 2008

We divided the data into 24 segments, each containing 64 observations (leaving out the first

52 observations), and fitted our model. We used a uniform prior for the number of components

in the mixture, with an upper limit of 20 components, i.e., Pr(j = k) = 0.05 for k = 1, . . . , 20.

Using this prior, our method estimates Pr(j = 1|yyy) = 0.75, that is, the posterior probability of the

time series being stationary is 0.75. To study the effect of the prior on the posterior distribution of
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the number of components, we redid the analysis using a Poisson distribution, with mean λ, i.e.,

Pr(j = k) = λke−λ

k! for three different values of λ. The results of this analysis appear in Table 1.

This table shows that a single component has the highest posterior probability for all priors on the

number of components. Even when λ = 5 and hence Pr(j = 1) = 0.03, the posterior probability is

Pr(j = 1|y) = 0.66. This finding is in contrast to Trenberth and Hoar (1996) who found that the

time series is nonstationary. There are a number of explanations for this disparity.

Prior
Number of Uniform Poisson

Components P (j = k) = 0.05 λ = 1 λ = 2 λ = 5

1 0.755 0.94 0.75 0.66
2 0.241 0.06 0.24 0.33
3 0.004 0.00 0.01 0.01
4 0.000 0.00 0.00 0.00

Table 1: Posterior probabilities of the number of components in the model fitted to the SOI data
as a function of the prior distribution.

The first is that we use the SOI rather than the DSLPA as an indicator of ENSO. To test if

the cause of the difference in findings was due to using different indicators of ENSO, we repeated

the analysis of Trenberth and Hoar using the SOI data. As in Trenberth and Hoar (1996), we

grouped the monthly data for the period 1876 to 1979 into seasons and fitted a parametric model

for the time series using AIC as the basis for model selection. Similar to Trenberth and Hoar, an

ARMA(3,1) of the form

yt = φ1yt−1 + φ2yt−2 + φ3yt−3 + et + θ1et−1, et ∼ N(0, σ2) (13)

was the model selected, with parameter estimates φ̂1 = 1.303, φ̂2 = −0.2707, φ̂3 = −.1876, θ1 =

−0.7524 and σ̂2 = 49. In (13), yt is the average of the SOI for the three months in season t. This

model was then used to generate 1,000,000 years of data. Trenberth and Hoar focused on the period

December 1989–May 1995, where 22 successive positive anomalies with a median of 0.94 mb were

recorded, and asked the question “If the ARMA(3,1) model is the true model, how likely is it that

we observe 22 successive negative DSLPA, and how likely is it that we observe a median value of

0.94 mb for any 22 season period?” The answers to these questions were about 1 in 8000 years

and 1 in 3000 years, respectively. From this they concluded that the time series structure of the

DSLPA had changed. Repeating the same analysis for the SOI data, we obtained the distribution

of run lengths of either sign, see Figure 9. Our results are of a similar order of magnitude to those

computed by Trenberth and Hoar, but comparison is difficult because the maximum run length for

the SOI data was only 11, not 22. However, except for one slightly positive SOI (0.20 for December,

January and February in 92/93), the maximum run length would have been 17. The frequencies of

observing run lengths of 11, 17, 22 or greater appear in Table 2. This table shows that the estimated

frequencies of events are very similar for both the SOI and the DSLPA, which is not surprising given
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Data
Run Length SOI DSLPA

> 11 1 in 47 years 1 in 55 years
> 17 1 in 800 years 1 in 910 years
> 22 1 in 9200 years 1 in 8600 years

Table 2: Frequency of occurrence of length of a run in SOI.
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Figure 9: Distribution of the number of runs for simulated values of the SOI assuming an
ARMA(3,1) process is the correct model.

that the ARMA(3,1) estimated for the SOI is very similar to the ARMA(3,1) process estimated for

the DSLPA (Trenberth and Hoar, 1996). However, different conclusions would be reached because

the behavior of the SOI for the period in question, i.e., December 1989–May 1995, is different from

the behavior of the DSLPA in the same period. A similar picture emerges for the test of the 22

season median value. The median value of the SOI from December 1989–May 1995 was -7.5. Using

the data-generating model given in (13), we computed that a 22 season median of -7.5 could be

expected to happen about once in 130 years, a very different value from once in 3000 years.

There are a number of other differences in our analysis of the ENSO effect. Trenberth and

Hoar (1996) assumed an ARMA(3,1) model for the data-generating process, whereas the method

presented in this paper models changes in the frequency domain to avoid assuming a particular

parametric model.

Another explanation is that Trenberth and Hoar (1996) tested explicitly if there had been a

change from 1981 onwards. In our model, explicitly testing for a difference in the SOI from 1981

onwards is equivalent to assuming a priori that in a mixture of two components, π12s = 1 for

segments s corresponding to time periods prior to 1981 and π12s = 0, otherwise. In effect, the

uncertainty surrounding the number and location of change points has been ignored by Trenberth
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Figure 10: Estimated log spectrum (solid line) and 95% posterior intervals (dashed line) against
frequency for monthly values of the Southern Oscillation Index (SOI) from June 1878 to May 2006.

and Hoar (1996). In contrast, our methodology makes no assumptions regarding the location

and number of any possible nonstationarity, and our estimate of Pr(j = 1|yyy) integrates out the

uncertainty regarding both the mixing function π and the number of possible change points.

A plot of the estimate of the log power together with 95% posterior intervals appears in Fig-

ure 10. Figure 10 shows a peak at about ν = 0.02, which corresponds to a 48 month (4 year)

cycle. We note that in our analysis, by modeling the evolution of the log spectra, we are modeling

the evolution of the second moment. It may be that the SOI is a nonstationary process but the

nonstationarity is apparent only in higher-order moments.

7.2 Earthquakes and Explosions

In this section we illustrate our methodology with seismic traces of an earthquake and a mining

explosion taken from Shumway and Stoffer (2006). These data were measured at a recording

station in Scandinavia, and are each of length 2048. Figures 11 and 12 show the data, along

with their estimated log spectrum. These particular time series both consist of two waves, the

compression wave, also known as primary or P wave, which is the start of the series and the shear,

or S wave, which arrives at the midpoint of the series. The delay between the arrival of the P

wave and the arrival of the S wave is used to get a quick and reasonably accurate estimate of the

location of the event. The analysis of such seismic data is one of critical importance for monitoring

a comprehensive test-ban treaty. As argued by many authors, e.g., Shumway and Stoffer (2006,

Ch 7), distinguishing between the seismic traces of earthquakes and explosions is best accomplished
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Figure 11: The earthquake time series (a), and its estimated time-varying log spectrum (b).

in the frequency domain. Hence, two problems are of interest in this analysis. The first one is to

identify the arrival of the S wave and the second problem is to estimate the time-varying spectrum

of the process, in order to distinguish between the seismic traces of explosions and earthquakes.

To illustrate our method, we fitted the mixture model to both time series after dividing them

into 32 segments of 64 observations each and computing the corresponding log periodograms. The

Gibbs sampler was run for 400000 iterations with a burn-in period of 200000 iterations. Table 3

presents the posterior probabilities of the number of components for the two time series. The S

component for the earthquake shows power at the low frequencies only, and the power remains

strong for a long time. In contrast, the explosion shows power at higher frequencies than the

earthquake, and the power of the signals (P and S waves) does not last as long as in the case of

the earthquake. Although the estimated time-varying spectra are qualitatively similar to those

considered in Shumway & Stoffer (2006, Chs. 4 and 7), the additional information contained in

the number of components needed to estimate the time-varying spectrum of each seismic trace, as

expressed in Table 3, may add a new dimension with which to discriminate between earthquakes

and explosions.

21



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.4

−0.2

0

0.2

0.4

Time

(a)

F
re

q
u

e
n

cy

Time

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

Figure 12: The explosion time series (a), and its estimated time-varying log spectrum (b).

No. of Components Earthquake Explosion

1 0.000 0.000
2 0.960 0.098
3 0.040 0.700
4 0.000 0.193

> 5 0.000 0.009

Table 3: Posterior probabilities of the number of components

Appendix: Details of the Sampling Scheme

First initialize the number of components, j. Conditional on this value, initialize the indicators,

γsrj , for s = 1, . . . , S and r = 1, . . . , j and θj = (βββ∗
′

j , τττ ′

j , δδδ
′

j)
′, where βββ∗

j = (α01, βββ
′

1j , . . . , α0j , βββ
′

jj)
′,

τττ j = (τ2
1j , . . . , τ

2
jj)

′, and δδδj = (δδδ′2j , . . . , δδδ
′

jj)
′. Note that θ1 = (β∗

′

11, τ
2
11)

′.

1. Moving Between Models

Let jc and jp be the current and proposed number of components in the model, respectively.

Let θc and θp be the corresponding parameter values, i.e. θc = θjc and θp = θjp . Let

V c = (jc, θc) and V p = (jp, θp). Using a proposal density q(V c, V p), we draw V p from

P (V p
∣∣ ỹ) as follows.

22



(a) If 1 < jc < J , propose a value for jp with transition probability q(jc → jp = jc±1) = 0.5.

If jc = 1, then q(jc → jp = 2) = 1, and if jc = J , then q(jc → jp = J − 1) = 1.

(b) If jp = jc + 1, then θp = (βββ∗
′

jc , βββ∗
′

jpjp , τττ ′

jc , τ2
jpjp , δδδ′jc , δδδ′jpjp)′, where δjpjp , τ2

jpjp and β∗

jpjp

are generated as follows.

i. Draw δjpjp from N(0, σ2
δI2).

ii. Draw τ2
jpjp from U(0, τ2

jcjc)

iii. Draw αjpjp from N(0, σ2
α)

iv. Draw βjpjp from N(0, τ2
jpjp · Ik), where k is the number of basis functions.

v. Accept the proposed parameter values with probability

ǫ = min

{
1,

P (V p
∣∣ ỹ)q(V p, V c)

P (V c
∣∣ ỹ)q(V c, V p)

}
(A.1)

(c) If jp = jc − 1, then

i. θp = θjc−1

ii. Accept the proposed parameter values with probability (A.1).

2. Updating Within a Model

Given the new values of j and θj , the model parameters are updated as follows.

(a) If j > 1 then

i. Let γsj = r if γsrj = 1. Generate component indicators γsj , s = 1, . . . , S, from

p(γsj = r
∣∣ β∗

j , δj , X
∗,ys) = πrjsp(ys

∣∣ X∗, β∗

rj)/

j∑

h=1

πhjsp(ys

∣∣ X∗, β∗

hj) , (A.2)

where

P (ys

∣∣ X∗, β∗) ∝ exp
(

ys,0−µ0

2 − 1
2 exp(ys,0 − µ0)

)

× exp
(

ys,n/2−µn/2

2 − 1
2 exp(ys,n/2 − µn/2)

)

× ∏n/2−1
k=1 exp

(
ys,k − µk − exp(ys,k − µk)

)
(A.3)

and µk is the kth element of X∗βββ∗.

ii. Generate δj from p(δj

∣∣ γj , U) via a Metropolis-Hastings step. The conditional

posterior distribution of δj is

p(δj

∣∣ γj , U) ∝ p(δj)
S∏

s=1

j∏

r=1

π
γsrj

rjs

= p(δj)
S∏

s=1

j∏

r=1

(
exp(δ′

rjus)
∑j

h=1 exp(δ′

hjus)

)γsrj

.

(A.4)
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The proposal density is N(δmax
j , Σδ), where δmax

j is the value of δj maximizing

p(δj

∣∣ γj , U) in (A.4), and Σδ =

{
−

∂2 log p(δj

∣∣ γj , U)

∂δj∂δ′

j
δj=δ

max

j

}
−1

.

(b) For any j:

i. Generate β∗

j from its conditional posterior distribution

p(β∗

j

∣∣ τττ j , γj , X
∗, ỹ) = p(β∗

j )
∏S

s=1

∏j
r=1 p(ys

∣∣ X∗, β∗

rj)
γsrj

=
∏S

s=1

∏j
r=1 p(β∗

rj)p(ys

∣∣ X∗, β∗

rj)
γsrj

(A.5)

as follows. For r = 1, . . . , j:

Generate the vector β∗

rj via a Metropolis-Hastings step. The conditional posterior

distribution of β∗

rj is

p(β∗

rj

∣∣ τ2
rj , γj , X

∗, ỹ) = p(β∗

rj)
S∏

s=1

p(ys

∣∣ X∗, β∗

rj)
γsrj .

The proposal density is N(β∗max
rj , Σβ∗

rj
), where β∗max

rj = arg max
β

∗

rj

p(β∗

rj

∣∣ τ2
rj , γj , X

∗, ỹ)

and Σβ∗

rj
=

{
−

∂2 log p(β∗

rj

∣∣ τ2
rj , γj , X

∗, ỹ)

∂β∗

rj∂β∗′

rj
β

∗

rj=β
∗max

rj

}
−1

.

ii. Generate τ j from p(τ j

∣∣ βj , ỹ) = p(τ j

∣∣ βj), such that τ2
1j ≥ τ2

2j ≥ . . . ≥ τ2
jj . Note

that p(τ2
rj

∣∣ βrj) = IG(k
2 , 1

2β′

rjβrj), where k is the number of basis functions.
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