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Summary

The classical method for estimating the spectral density of a multivariate time series

is to first calculate the periodogram, and then smooth it to obtain a consistent estimator.

Typically, to ensure the estimate is positive definite, all the elements of the periodogram

are smoothed the same way. There are, however, many situations for which different com-

ponents of the spectral matrix have different degrees of smoothness, and hence require dif-

ferent smoothing parameters in order to obtain optimal estimates. We suggest a Bayesian

approach that uses Markov chain Monte Carlo techniques to fit smoothing splines to each

component—real and imaginary—of the Cholesky decomposition of the the periodogram

matrix. The spectral estimate is then obtained by reconstructing the spectral estimator

from the smoothed Cholesky decomposition components. Our technique allows for auto-

matic smoothing of the different components of the spectral density matrix. In addition,

because our procedure produces a sample from the posterior distribution of all the parame-

ters, credible intervals are easily obtained.

Some key words: Coherency; Cholesky decomposition; DNA nucleotide sequence; MCMC;

Multivariate spectral density, Smoothing splines; Spectral analysis; Spectral envelope.



1 Introduction

The classical method for estimating the spectral density of a multivariate time series is to

first calculate the periodogram, and then smooth it to obtain a consistent estimator; for ex-

ample, see Brillinger (2001, Ch. 5) or Shumway & Stoffer (2000, Ch. 3). A major difficulty

is to guarantee that the final estimate is positive definite while allowing optimal smooth-

ing for each element of the spectral matrix. Typically, to ensure the estimate is positive

definite, all the elements of the periodogram are smoothed the same way. Pawitan (1996)

proposed a penalized likelihood estimator for the cross-spectrum of a bivariate time series.

The smoothing parameters for the real and imaginary parts can be chosen objectively from

the data. Thus the real and imaginary parts can have different smoothness. With an implicit

restriction on the estimation procedure to make the coherence less than or equal to one, the

estimator is positive semidefinite. Extension of this method beyond bivariate time series is

difficult because estimating the cross-spectra one at a time cannot guarantee that the final

multivariate spectral estimate is positive semidefinite. Another difficulty is in constructing

confidence intervals for the spectrum. In the univariate setting, Franke & Har̈dle (1992) pro-

posed a bootstrap procedure for constructing confidence intervals. It is, however, difficult

to generalize this method to the multivariate setting. As pointed out in Dai & Guo (2004),

there are many situations for which different components of the spectral matrix have dif-

ferent degrees of smoothness, and hence require different smoothing parameters in order to

obtain optimal estimates.

Dai & Guo (2004) overcame these problems by smoothing the Cholesky decomposition

of a multitaper spectral estimate and then reconstructing the spectral estimate from the

smoothed Cholesky components. Given data from a stationary, vector-valued, time series,

their estimation and inference procedure consisted of the following steps: (i) compute the

periodogram of the data; (ii) smooth the periodogram using a multitaper spectral estimator

(Thomson, 1982); (iii) perform the Cholesky decomposition on the multitaper estimator;

(iv) smooth each of the Cholesky decomposition components with its own smoothing pa-

rameter; (v) reconstruct the spectral estimator from the smoothed Cholesky decomposition

components, and (vi) use a bootstrap method to obtain pointwise confidence intervals.
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In this paper we take a Bayesian approach that uses Markov chain Monte Carlo (MCMC)

techniques to fit smoothing splines to each component—real and imaginary—of the Cholesky

decomposition of the the periodogram matrix. The spectral estimate is then obtained by re-

constructing the spectral estimator from the smoothed Cholesky decomposition components.

The advantage of our technique is that it allows for automatic smoothing of the components

but avoids having to pre-smooth the periodogram by calculating a multitaper estimate. In

addition, because our procedure produces a sample from the posterior distribution of all the

parameters, credible intervals are easily obtained.

We describe the details of our procedure in the next section. Throughout, we assume that

we have a sufficiently large number, n, of observations from a p-dimensional stationary time

series, xxxt, whose p×p autocovariance matrix, Γ(h) = {γjk(h)}, satisfies
∑

∞

h=−∞
|γjk(h)| <∞

for all j, k = 1, . . . , p. The p× p spectral density matrix is given by

f(ν) =
∞
∑

h=−∞

Γ(h)e−2πiνh, −1/2 ≤ ν ≤ 1/2 ,

where f(ν) = {fjk(ν)}, for j, k = 1, . . . , p, and frequency, ν, is measured in cycles per time;

note that f(ν) = f ∗(ν), where ∗ denotes the conjugate transpose. Finally, we assume f(ν)

is positive definite.

2 The model and prior specification

Given a realization xxx1, . . . , xxxn from a multivariate stationary time series, the discrete Fourier

transform (DFT) of the data is given by

yyy(νk) = n−1/2
n
∑

t=1

xxxte
−2πiνkt

for k = 0, 1, . . . , n − 1, where νk = k/n are the Fourier frequencies. The DFTs, yyy(νk),

k = 0, . . . , n − 1, of a zero-mean stationary multivariate time series are approximately in-

dependent complex multivariate normal random variables. Let yyyk ≡ yyy(νk) and fk ≡ f(νk),

k = 0, . . . , n− 1. The approximate likelihood is given by

L(yyy0, . . . , yyyn−1; f0, . . . , fn−1) ≈
n−1
∏

k=0

|fk|−1 exp(−yyy∗kf−1
k yyyk) , (1)
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where | · | denotes determinant. Equation (1) is an extension of the Whittle likelihood

(Whittle, 1957) to the multivariate case. Note that since the spectral matrix and the DFT

are even functions of ν, there are only [n/2] distinct observations.

Our goal is to obtain smooth estimates of the elements of f as a function of ν while

satisfying the constraint that f is positive definite. To this end, we express the inverse of

the spectral matrix at frequency νk as the modified complex Cholesky factorization

f−1
k = T ∗

kD
−1
k Tk , (2)

where Tk is a complex unit lower triangular matrix, and Dk is a diagonal matrix. More

specifically,

Tk =





















1

−θ(k)
21 1

−θ(k)
31 −θ(k)

32 1
...

...
. . .

−θ(k)
p1 −θ(k)

p2 . . . −θ(k)
p,p−1 1





















and Dk = diag(δ2
1k, . . . , δ

2
pk). Note that in general, the θ

(k)
il ’s are complex valued. The real

modified Cholesky decomposition has been used to model covariance matrices; see, for ex-

ample, Pourahmadi (1999), Pourahmadi (2000), Daniels & Pourahmadi (2002), Pourahmadi

& Daniels (2002), and Wu & Pourahmadi (2003).

We note that Dai & Guo (2004) worked directly with the complex Cholesky decomposition

of fk, say fk = LkL
∗

k, where Lk is lower triangular. In particular, they obtained smoothed

estimates of the elements of Lk. In our case, we use the modified decomposition of f−1
k given

in (2) because it appears naturally in the likelihood, (1). As previously stated, modeling the

elements of the spectral matrix directly is difficult due to the constraint that the spectral

matrix must be positive definite at each frequency. In the factorization (2), the θ
(k)
il ’s are

unconstrained and the δ2
jk’s are positive. Thus, modeling these parameters rather than the

elements of the spectral matrix is a much easier task. Once Tk and Dk have been estimated,

the resulting estimate of fk is automatically positive definite.

To facilitate the estimation of the θ
(k)
il ’s and the δ2

jk’s and thereby the estimation of

the spectral matrix, we use the likelihood (1) in combination with the factorization (2).
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We first rewrite the likelihood (1) as a function of the θ
(k)
il ’s and the δ2

jk’s. Let N=[n/2],

θk be the p(p − 1)/2-dimensional vector (θ
(k)
21 , θ

(k)
31 , θ

(k)
32 , . . . , θ

(k)
p,p−1)

′, Θ = (θ1, . . . , θN), ∆ =

{δ2
1k, . . . , δ

2
pk}N

k=1 and Y = (yyy1, . . . , yyyN). From (1) and (2) it follows that the likelihood can

be expressed as

L(Y ; ∆,Θ) ∝
N
∏

k=1

p
∏

j=1

δ−2
jk exp{(yyyk − Zkθk)

∗D−1
k (yyyk − Zkθk)} , (3)

where Zk is a p× p(p− 1)/2 design matrix given by

Zk =























0 0 0 0 0 0 0 . . . 0
y1k 0 0 0 0 0 0 . . . 0
0 y1k y2k 0 0 0 0 . . . 0
0 0 0 y1k y2k y3k 0 . . . 0
...
0 . . . . . . 0 y1k y2k . . . yp−1,k























with yik denoting the ith entry of yyyk. Note that in (3) we have ignored the endpoint involving

yyy0. Next, we place linear smoothing splines priors on the θ
(k)
il ’s and the δ2

jk’s. Dai & Guo

(2004) used cubic smoothing splines. In our experience, linear smoothing splines are better

suited for estimating the spectral matrix, as they can better accommodate narrowband peaks.

In particular, each of the log δ2
jk’s and the real and imaginary parts of each of the negative

θ
(k)
il ’s are expressed as follows

α0 + α1νk +
N
∑

s=1

ψs(νk)βs , (4)

where ψs(νk) =
√

2 cos((s− 1)πνk). The ψs(·)’s are the Demmler-Reinsch basis functions for

linear smoothing splines (see Eubank, 1999). Let Xβ be the matrix whose columns are the

basis functions ψs(·) evaluated at ν1, . . . , νN , and Xα a matrix whose columns are the unit

vector and (ν1, ..., νN)′. Let X = (Xα|Xβ), i.e., the matrix formed by binding Xα and Xβ

columnwise, γj = (α′

j,β
′

j)
′, ∆j = (δ2

j1, . . . , δ
2
jN)′ and θil = (θ

(1)
il , . . . , θ

(N)
il )′, then

log ∆j = Xγj, −<(θil) = Xγil(re), −=(θil) = Xγil(im) , (5)

for j = 1, . . . , p, i = 2, . . . , p, and l = 1, . . . , i−1, where <(·) and =(·) denote the real part and

the imaginary part, respectively. Corresponding to (5), the priors on αj, αil(re) and αil(im)
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are taken to be N(000, σ2
αI2), and those on βj, βil(re) and βil(im) are taken to be N(000, τ 2

j IN),

N(000, τ 2
il(re)IN) and N(000, τ 2

il(im)IN), respectively. Viewing the θ
(k)
il ’s and the δ2

jk’s as functions

of ν, the parameters τ 2
j , τ 2

il(re) and τ 2
il(im) are smoothing parameters, governing the amount of

smoothing of each of these functions. A zero value of a smoothing parameter means a linear

fit, while a value tending to infinity results in an interpolating linear spline. The priors on

the smoothing parameters are p(τ 2
j ) ∝ 1/τ 2

j , p(τ 2
il(re)) ∝ 1/τ 2

il(re) and p(τ 2
il(im)) ∝ 1/τ 2

il(im).

We estimate the spectral matrix by its posterior mean using MCMC methods to perform

the required multidimensional integration.

3 The sampling scheme

Let uuuk = yyyk − Zkθk. Plugging the expression for log∆j in (5) into the likelihood (3) and

incorporating the priors, the conditional distribution of γj, j = 1, . . . , p is given by

p(γj | Θ, Y ) ∝ exp

{

−
N
∑

k=1

(xxx′kγj + |ujk|2 exp(−xxx′kγj)) −
1

2σ2
α

α′

jαj −
1

2τ 2
j

β′

jβj

}

, (6)

where ujk is the jth element of uuuk, | · | denotes the complex modulus and xxxk is the kth

row of X. Since this is not a standard distribution, we use a Metropolis-Hastings step to

sample from it. The conditional distributions of the corresponding smoothing parameters are

IG(N/2, 1
2
β′

jβj) for j = 1, . . . , p. The conditional distributions of γ il(re) and γil(im) for i =

2, . . . , p and j = 1, . . . , i−1, are multivariate normal, and the conditional distributions of the

corresponding smoothing parameters are IG(N/2, 1
2
β′

il(re)βil(re)) and IG(N/2, 1
2
β′

il(im)βil(im)),

where IG denotes the inverse gamma distribution. In principle, for smoothing splines, the

knots are at the abscissa values of the data points. Thus, in our case, there are N basis

functions. In practice, however, not all the N basis functions are necessary; in fact, only

about N/10 are usually sufficient. More details of the sampling scheme are given in the

appendix.

6



4 Examples

We illustrate our methodology with three examples. First, to test the viability of our ap-

proach, we consider simulated data from a bivariate time series. The second example is a

bivariate time series consisting of monthly measurements of the Southern Oscillation Index

and the associated number of new fish in the Pacific Ocean. This example is taken from

Shumway & Stoffer (2000), who used the data to explore the El Niño cycle. In the third

example, we use the method to estimate the spectral envelope (Stoffer et al., 1993) of a

DNA sequence. Further details on the spectral envelope will be given in the subsection cor-

responding to the analysis. For each example, the MCMC procedure was run for a total of

2000 iterations with a burn-in period of 1000 iterations.

4.1 Simulated data

We simulated n = 1024 observations from the bivariate times series, xxxt = (x1t, x2t)
′,

xxxt = Φ1xxxt−1 + Φ2xxxt−2 + zzzt ,

where

Φ1 =

(

0.5 0
0 −0.3

)

,Φ2 =

(

0 0
0 −0.5

)

and zzzt ∼ N

(

000, Σ =

(

1 0.9
0.9 1

))

;

The zzzt were generated independently. The 2 × 2 spectral matrix of the process is (see

Shumway & Stoffer, 2000, Ch. 3)

f(ν) = Φ−1(ν) Σ Φ∗−1(ν)

where

Φ(ν) = I − Φ1 exp(−2πiν) − Φ2 exp(−4πiν).

From this fact, we may calculate the elements of the spectral matrix of this process:

f11(ν) = [1.25 − cos(2πν)]−1 ,

f22(ν) = [1.34 + 0.9 cos(2πν) + cos(4πν)]−1 ,
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Figure 1: The periodograms, true spectra (solid), estimates (dotted) and 99% credible in-
tervals (dashdotted), all on a log scale.

f12(ν) = 0.9{0.85 − 0.45 cos(2πν) + 0.5 cos(4πν) + i[0.5 sin(4πν) + 0.55 sin(2πν)]}−1

and f21(ν) = f ∗

12(ν). In addition, the squared coherency between the component processes

is constant,

ρ2
12(ν) =

|f12(ν)|2
f11(ν)f22(ν)

= .81.

Figure 1 displays the periodogram ordinates of the simulated series, the true spectral

components, f11(ν) and f22(ν), and the corresponding estimated spectra along with 99%

pointwise credible intervals, all on a log scale. These intervals are obtained as the 0.005 and

0.995 empirical percentiles of the MCMC iterates, after the burn-in period, of Xγγγ1 and Xγγγ2

at each νk. In addition, the estimated squared coherency (not shown) is approximately a

straight line around the true squared coherency, ρ2
12(ν) = .81. This example demonstrates

that our technique is a viable approach for obtaining smoothed spectral estimates of multi-
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variate processes.

Finally, some comments are in order. First, we note that the spectral density of the second

component, f22(ν), has a fairly sharp peak around ν = .28. This fact is obscured in Figure 1

because, to improve the visual impact, the spectra are plotted on a log scale, and in landscape

mode (spectra are typically plotted this way). Second, because changing the order of the

time series will change the Cholesky decomposition of the spectral matrix, we investigated

the possibility that the ordering matters. In particular, we repeated this simulation with the

components reversed, that is, with xxxt = (x2t, x1t)
′, instead of xxxt = (x1t, x2t)

′. Although the

components of the Cholesky decomposition were changed, the final estimates of the spectra

and cross-spectra did not change. Finally, to monitor convergence, we ran four chains with

dispersed random starting points. We then looked at iteration plots, i.e., the iterates from

the four chains for a given parameter as a function of the iteration number. In all the plots,

following the warm-up period, the within-chain variation was in close agreement with the

between-chain variation, i.e., the four chains were almost indistinguishable.

4.2 El Niño Cycle

Throughout Shumway & Stoffer (2006), two simultaneously recorded series are used to ex-

plore the El Niño cycle. Figure 2 shows these series, which are monthly values of the Southern

Oscillation Index (SOI) and associated Recruitment (number of new fish) for a period of 453

months ranging over the years 1950–1987. The SOI measures changes in air pressure related

to sea surface temperatures in the central Pacific Ocean. The central Pacific Ocean warms

every three to seven years due to the El Niño effect. Both series exhibit regularly repeating

cycles. The two series are related because the fish spawn in colder waters.

Figure 3 presents the estimated spectra (the diagonal elements of the estimated spectral

matrix) as a function of frequency. Both spectra have peaks at about the same frequencies.

One is at ν = 1/12 cycles per month which is the obvious yearly cycle. The other peak at

about ν = 1/48 represents a possible El Niño effect. The yearly cycle has more power in the

SOI series. In addition, both spectra show small peaks at the harmonic frequencies of the
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Figure 2: Monthly SOI and Recruitment series over the years 1950–1987.

yearly cycle.

To examine how the two series are related, we also plotted the estimated squared co-

herency in Figure 4. This plot shows that the El Niño and yearly cycles are strongly coherent.

Other frequencies are also coherent but this is less meaningful, because they are harmonics

of the yearly cycle and the power spectra at the harmonics (see Figure 3) are small.

4.3 Spectral envelope and DNA sequences

In some applications, an investigator may be more interested in a function of the compo-

nents of a spectral matrix, such as coherency, described in the previous subsections. We now

investigate the case of estimating eigenvalues and eigenvectors of the spectral matrix. In par-

ticular, we focus on estimating the spectral envelope (an eigenvalue) and the corresponding

scaling (an eigenvector) of a DNA nucleotide sequence. In this case, the data are a sequence

of multivariate 3 × 1 indicator vectors that correspond to the sequence of nucleotides. For

10



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

ν

Sp
ec

tru
m

SOI Series

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1000

2000

3000

4000

5000

6000

ν

Sp
ec

tru
m

Recruitment Series

Figure 3: Individual estimated spectra of the SOI and Recruitment series.
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Figure 4: Squared coherency function relating SOI to Recruitment.

brevity, we do not include a discussion of the spectral envelope and we refer the reader to

Stoffer et al. (1993) or Shumway & Stoffer (2006, Ch §7.9) for details.

In this example, we analyze part of the BNRF1 gene in Herpesvirus saimiri (HVS); the

data are taken from GenBank. This particular coding sequence occurs from bp 6821 to

10561. As in Stoffer (2002), we estimate the spectral envelope for 1000 bps starting at bp

8820 of the CDS. Figure 5 displays the estimated spectral envelope corresponding to this

subset of the HVS sequence. The spectral envelope picks up a signal at one cycle every three
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Figure 5: Spectral envelope for part of a coding sequence in Herpesvirus saimiri.

bp, which occurs often in CDS we have analyzed. There is another peak in the spectral

envelope indicating a signal at one cycle every ten bp. This signal is particularly interesting

because, while the double helix makes one turn about every 10 bp, the 10 bp signal is rarely

seen and the importance of this twisting is not clear.

Finally, it is worthwhile to look at the scalings corresponding to each peak. For ν = 1/10,

the scalings are A = 2.12, C = 1.93, G = 0.17, T = 0. This suggests that the signal is

attributed to the M-K alphabet, where M = A or C and K = G or T is the complement of

M. This structure itself is of interest. The relationship between A and C is that both have

aMino (hence the M) groups at the ring position most distant from the point of attachment

to the sugar and the relationship between guanine and thymine is that both have Keto (hence

the K) groups at the corresponding position. For ν = 1/3, the scalings are A = 2.28, C =

0.89, G = 2.16, T = 0. This suggests that the signal may be attributed to the common RYY

alphabet, where R denotes a puRine (A or G) and Y denotes a pYrimidine (C or T).
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Appendix: Details of the Sampling Scheme

In this appendix we give more details about the conditional distributions of γ il(re) and γil(im),

i = 2, . . . , p, l = 1, . . . , i − 1 used for performing the Gibbs sampler. We use the notation

established in §2 and §3.

A.1 Bivariate time series

Let

vvv21(re) =
N
∑

k=1

δ−2
2k (y∗2k y1k + y∗1k y2k)xxxk,

vvv21(im) =
N
∑

k=1

δ−2
2k i(y

∗

2k y1k − y∗1k y2k)xxxk,

A21(·) = diag
{

1

2
(σ−2

α , σ−2
α , τ−2

21(·), . . . , τ
−2
21(·))

}

,

for · = re, im, and

B21 =
N
∑

k=1

δ−2
2k |y1k|2xxxkxxx

′

k,

where yjk denotes the complex conjugate of yjk and i =
√
−1. Then

p(γ21(re)|γ2, τ
2
21(re), Y ) ∼ N(µ21(re),Σ21(re)) (A.1)

and

p(γ21(im)|γ2, τ
2
21(im), Y ) ∼ N(µ21(im),Σ21(im)) , (A.2)

where Σ21(·) = 1
2
(A21(·) +B21)

−1 and µ21(·) = Σ21(·)vvv21(·), for · = re, im.

The conditional distribution for drawing γj, j = 1, 2 is given in (6). To draw from it,

we use a Metropolis-Hastings step with a multivariate normal proposal distribution. The

mean and variance-covariance of this multivariate normal distribution are the maximizer

13



of (6) with respect to γj, and the inverse of the negative hessian of (6) evaluated at this

maximizer, respectively. The sampling scheme, thus, consists of

1. Drawing γj from (6), for j = 1, 2.

2. Drawing γ21(re) and γ21(im) from (A.1) and (A.2), respectively.

3. Drawing τ 2
j , j = 1, 2, τ 2

21(re) and τ 2
21(im) from the inverse Gamma distributions described

in Section 3.

A.2 Trivariate time series

The vectors γ21(re) and γ21(im) are drawn according to (A.1) and (A.2), respectively. Let

vvv31(re) =
N
∑

k=1

δ−2
3k [y∗3k y1k + y3k y

∗

1k − xxx′kγ32(re)(y
∗

1k y2k + y∗2k y1k)]xxxk ,

vvv31(im) =
N
∑

k=1

δ−2
3k [i(y∗3k y1k − y3k y

∗

1k) − xxx′kγ32(im)(y
∗

1k y2k + y∗2k y1k)]xxxk ,

B31 =
N
∑

k=1

δ−2
3k |y1k|2xxxkxxx

′

k ,

vvv32(re) =
N
∑

k=1

δ−2
3k [y∗3k y2k + y3ky

∗

2k − xxx′kγ31(re)(y
∗

1k y2k + y∗2k y1k)]xxxk ,

vvv32(im) =
N
∑

k=1

δ−2
3k [i(y∗3k y2k − y3ky

∗

2k) − xxx′kγ31(im)(y
∗

1k y2k + y∗2k y1k)]xxxk ,

B32 =
N
∑

k=1

δ−2
3k |y2k|2xxxkxxx

′

k .

For i = 3, l = 1, 2 and · = re, im, let Ail(·) = diag
{

1
2
(σ−2

α , σ−2
α , τ−2

il(·), . . . , τ
−2
il(·))

}

, then

p(γ31(re)|γ32(re),γ3, τ
2
31(re), Y ) ∼ N(µ31(re),Σ31(re)) , (A.3)

p(γ31(im)|γ32(im),γ3, τ
2
31(im), Y ) ∼ N(µ31(im),Σ31(im)) , (A.4)

p(γ32(re)|γ31(re),γ3, τ
2
32(re), Y ) ∼ N(µ32(re),Σ32(re)) (A.5)

14



and

p(γ32(im)|γ31(im),γ3, τ
2
32(im), Y ) ∼ N(µ32(im),Σ32(im)) , (A.6)

where Σil(·) = 1
2
(Ail(·) + Bil)

−1 and µil(·) = Σil(·)vvvil(·), for i = 3, l = 1, 2 and · = re, im. The

different parameters are drawn in an analogous fashion to that described in Section A.1.
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