Math 2326, Test I

Name			
Name			

For problems 1-4, solve the differential equations. If you cannot solve for the dependent variable, leave the solution defined implicitly. If no initial condition is given, write the general solution.

1.
$$\frac{dy}{dx} - 4y = -12x - 5$$
.

answer:
$$y = Ce^{4x} + 3x + 2$$

2.
$$\frac{dy}{dt} = \frac{t}{3y^2 - 1}$$
, with $y(0) = 4$

answer:
$$y^3 - y = \frac{1}{2}t^2 + 60$$

3.
$$\frac{dy}{dx} = \frac{3x\sqrt{1+y^2}}{y}$$
, with $y(0) = -1$

answer:
$$y = -\sqrt{(\frac{3}{2}x^2 + \sqrt{2})^2 - 1}$$

4.
$$\frac{dy}{dt} + 6y = 5e^{-6t}$$
.

answer:
$$y = Ce^{-6t} + 5te^{-6t}$$

5. For the differential equation y' = 3x + 2y, y(0) = 2, take three steps using Euler's method with h = 0.1, to approximate y(0.3). You may use the following table, if you want:

X	У	f(x,y) = 3x + 2y	y + h*f(x,y)
0.0	2.000	4.000	2.400
0.1	2.400	5.100	2.910
0.2	2.910	6.420	3.552
0.3	3.552	(skip)	(skip)

- 6. Consider the differential equation $\frac{dP}{dt} = (\frac{P}{10} 1)(1 \frac{P}{5})P^2$
 - a. Is this equation autonomous? (answer: yes)
 - b. Is this equation linear? (answer: no)
 - c. Find all equilibrium points, and classify each as a source, sink or node.

answer: P = 10 is sink, P = 5 is source, P = 0 is node

7. A cup of coffee is initially at 100° F and is left in a room with a temperature of 70° F. Suppose that at time t=0 it is cooling at a rate of 3° F per minute. Assume that Newton's law of cooling applies, that is, the rate of cooling is proportional to the difference between the current temperature T(t) and the room temperature, 70° F. Find a formula for the temperature T(t) as a function of time.

answer: $T(t) = 70 + 30e^{-0.1t}$