MATH 5343 Final

1. Under what conditions is the following method (to approximate $u_{tt} = u_{xx}$) stable, where $U_i^k \equiv U(x_i, t_k)$ (justify answer)? (Hint: $e^{Imdx} - 2 + e^{-Imdx} = -4sin^2(m * dx/2)$)

Name_____

$$\frac{U_i^{k+1} - 2U_i^k + U_i^{k-1}}{dt^2} = \frac{U_{i+1}^{k-1} - 2U_i^{k-1} + U_{i-1}^{k-1}}{dx^2}$$

2. a. When a Galerkin finite element method is used to approximate the solution of u'' + f(x) = 0, u(0) = u(1) = 0, and the approximate solution is expanded as a linear combination of piecewise linear "chapeau" trial functions $\phi_i(x) : U(x) = \sum_{i=1}^{N-1} a_i \phi_i(x)$ there results a linear system $A\mathbf{a} = \mathbf{b}$ for the unknowns $\mathbf{a} = (a_1, ..., a_{N-1})$. Give formulas (involving integrals, and only first derivatives) for the elements A_{ki}, b_k of the matrix and right hand side vector.

b. If the integrals in A_{ki} are calculated exactly, and a mid-point rule is used to approximate the integral in b_k , taking into account that $a_i = U(x_i)$, the resulting linear equations simplify (assuming uniformly spaced x_i) to:

$$\frac{-U(x_i+h)+2U(x_i)-U(x_i-h)}{h} = \frac{h}{2}[f(x_i+h/2) + f(x_i-h/2)]$$

Find the truncation error for this "finite difference" scheme.

- c. Explain why the collocation method cannot be used here in place of the Galerkin method.
- 3. The usual centered, second order, finite difference approximations are used to solve $u_{xx} + u_{yy} + u_{zz} = f(x, y, z)$, with u = 0 on the boundary of the cube 0 < x < 1, 0 < y < 1, 0 < z < 1. If M gridlines are used in each direction, ie, $x_i = i/M, i = 0, ..., M$ and similarly for y_j, z_k , a linear system results with $(M - 1)^3$ unknowns and $(M - 1)^3$ equations (one equation centered on each unknown). If the unknowns are numbered by planes, that is, all unknowns on the plane z_1 are numbered first, then those on plane z_2 , etc, then:
 - a. Approximately how many multiplications are done if this linear system is solved by a Gauss elimination routine, which does not take any advantage of zero elements?
 - b. Approximately what is the half-bandwidth of the linear system? (Half-bandwidth = max |i j| such that $A_{ij} \neq 0$.)
 - c. Approximately how many multiplications are done if it is solved by a band solver, with partial pivoting?
 - d. Approximately how many if a band solver is used with no pivoting?
 - e. Approximately how many "divisions" are done if the SOR iterative method is used with optimal ω , assuming the number of iterations is then about cM.

- 4. Consider the eigenvalue problem $u_{xx} + u_{yy} = \lambda u$ with u = 0 on the boundary of a 2D region R. An approximate eigenfunction of the form $U(x,y) = \sum_{i=1}^{N} a_i \phi_i(x,y)$ is sought, where the ϕ_i are linearly independent and each is 0 on the boundary.
 - a. If a Galerkin finite element method is used, a generalized eigenvalue problem $A\mathbf{a} = \lambda B\mathbf{a}$ results, where $\mathbf{a} = (a_1, ..., a_N)$. Give formulas (involving integrals, and only first derivatives) for the elements A_{ki}, B_{ki} of matrices A and B.

b. Show that the matrix B in problem 4a is positive definite. (Recall that one definition of positive definite is that B is symmetric and $z^T B z > 0$ for any nonzero vector z.) Thus, B is nonsingular.

- c. Write the inverse power method iteration for finding the smallest eigenvalue of $Az = \lambda Bz$ in a form where no inverses are calculated.
- d. If a collocation finite element method is used, with collocation points (x_k, y_k) , a generalized eigenvalue problem $Aa = \lambda Ba$ again results; this time what are the elements of A_{ki}, B_{ki} of A and B? Is B now positive definite?