
The Crank-Nicolson method approximatesut = Duxx (D > 0) by:
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We expandU(xi, tk) in a Fourier series:
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and take one term of this series and substitute forU(xi, tk):
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dividing through byeImxi :
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now, using Euler’s formula and a trig identity:

eIm∆x − 2 + e−Im∆x = 2cos(m∆x) − 2 = −4sin2(m∆x/2)

we get:

am(tk+1) − am(tk) = −ram(tk) − ram(tk+1)

wherer ≡ 2D∆t

∆x2 sin2(m∆x/2). Then
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(1 + r)am(tk+1) + (−1 + r)am(tk) = 0

for fixed m, this is a first order, linear, constant coefficient, homogeneous recurrence
relation, so we look for solutions of the formam(tk) = λk, and get the characteristic
polynomial:

(1 + r)λ + (−1 + r) = 0

which has the single rootλ = 1−r

1+r
. Sincer ≥ 0 for all m, |λ| ≤ 1 always, so for allm,

am(tk) = Cλk is bounded. So the Crank-Nicolson method is always stable.
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