Nov 21 Homework

- 1. If you want a power series $\sum_{i=0}^{\infty} a_i x^i$ whose coefficients a_i give the number of unordered partitions of i which do not include any 2's, and do not include any parts over 4, what series do you multiply?
- 2. Write out the first 8 terms (up to a_7x^7) in this series. Actually list the a_7 partitions of 7, using only 1's, 3's and 4's.
- 3. Find the number of ordered partitions (compositions) of n=8 of p parts, with no part 1. That is, find the number of solutions to $x_1+x_2+...+x_p=8$, with $x_i \geq 2$. (Hint: substitute $y_i=x_i-1$.) Clearly, p cannot be more than 4; add up the answers for p=1,2,3 and 4, and verify that it is $F_{n-1}=F_7$, as claimed in Schumer problem 15.7.
- 4. The number of partitions, p(n), for the first 10 integers are:

p(1)= 1p(2)= 2p(3)= 3= 5 p(4)= 7p(5)p(6)= 11= 15p(7)= 22p(8)= 30p(9)p(10) = 42

List all partitions of n, for n=1 through 7.