
1. a. Solve the 1D steady-state beam bending problem of Exercise 4.2.8
(p84), with E = 10, I(x) = 1, L = 2.5 (E = elastic modulus, I =
moment of inertia, L = beam length). Also, putf(x) = −1, so there
is a constant downward force, namely the weight of the uniform beam
itself. The boundary conditions specify that the beam is clamped at
the left end, and free and unsupported at the right end. Also solve the
boundary problem analytically and compute theL1 norm of the error,
that is, the integral of|u−utrue|. SetE, I, L, f as parameters, so their
values could be easily changed. Note that parameters and variables
must begin with a letter in the rangeA − H or O − Z, otherwise they
will be integers, for example,L would be rounded down to 2, so use
(for example)RL instead ofL.

Use the PDE2D GUI (pde2dgui [name]) which means the collocation
method will be used.

b. Repeat the problem using the Galerkin method. For this youmust use
the Interactive Driver (pde2d [name]). Notice that the format for the
PDEs and (especially) the boundary conditions are very different than
for the collocation method, so pay close attention to the documenta-
tion, especially to the hint on how to handle ”mixed” (eg, onefixed,
one free) boundary conditions.

2. a. Solve the 1D time-dependent heat conduction/convection problem of
Example 6.1 (p108), withρ = 1.1, C = 0.18, v = 2.0, κ = 0.1, L =
5, T0 = 30, Tout = 10, k/R = 0.2, Tinit(z) = T0 + (Tout − T0)z/L
(ρ = fluid density, C = fluid specific heat, v = fluid velocity,κ = fluid
heat conductivity, L = pipe length,T0 = temperature of entering fluid,
Tout = temperature of pipe wall and outlet, k = heat transfer coefficient
between fluid and pipe wall, and R = pipe radius). Solve this forward
in time to t = 2. Note that the spatial variable must be calledx, not
z, and you will not be able to call the temperature T, because T is
reserved for time, so call it TMP, and use names TMP0, TMPout in
place of T0,Tout. You can use EITHER the collocation OR Galerkin
method.
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b. Now replace the boundary condition at the outlet (z = L) by the
nonlinear radiation boundary condition at the top of page 68, with
σ = 10−5 (σ = radiation heat transfer coefficient) and repeat the prob-
lem. You will need to reset the variable LINEAR to .FALSE. (collo-
cation method only), and FDIFF to .TRUE..
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c. Repeat the problem with no conduction,κ = 0. Now this is the hyper-
bolic transport problem of Example 8.1 (p153), and there should now
be ”no” boundary condition at the outlet, since it is first order in space.
Note that without conduction (diffusion of heat), the discontinuity in
the derivative is not smoothed out now, but simply transported forward
with velocityv.
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