1.

a. Solve the 1D steady-state beam bending problem of Eredc2.8

(p84), with E = 10,1(x) = 1,L = 2.5 (E = elastic modulus, | =
moment of inertia, L = beam length). Also, pfitz) = —1, so there
is a constant downward force, namely the weight of the unifoeam
itself. The boundary conditions specify that the beam isnplad at
the left end, and free and unsupported at the right end. Als@ she
boundary problem analytically and compute thenorm of the error,
that is, the integral ofu — u...|. SetE, I, L, f as parameters, so their
values could be easily changed. Note that parameters arabhes
must begin with a letter in the range— H or O — Z, otherwise they
will be integers, for examplel, would be rounded down to 2, so use
(for example)R L instead ofL.

Use the PDE2D GUI (pde2dui [name]) which means the collocation
method will be used.

. Repeat the problem using the Galerkin method. For thiswast use

the Interactive Driver (pde2d [name]). Notice that the fatrfor the
PDEs and (especially) the boundary conditions are vergdifft than
for the collocation method, so pay close attention to theudwnta-
tion, especially to the hint on how to handle "mixed” (eg, dixed,
one free) boundary conditions.

. Solve the 1D time-dependent heat conduction/corregptioblem of

Example 6.1 (p108), with = 1.1,C = 0.18,v = 2.0,k = 0.1, L =
5Ty = 30, T, = 10,k/R = 0.2, T5u(2) = To + (Tow — To)z/L

(p = fluid density, C = fluid specific heat, v = fluid velocity,= fluid
heat conductivity, L = pipe lengtly = temperature of entering fluid,
T,.: = temperature of pipe wall and outlet, k = heat transfer coiefiit
between fluid and pipe wall, and R = pipe radius). Solve thiz&od

in time tot = 2. Note that the spatial variable must be caltedhot

z, and you will not be able to call the temperature T, becausse T i
reserved for time, so call it TMP, and use names TMPO, TMPwout i
place of TO,Tout. You can use EITHER the collocation OR Gater
method.
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. Now replace the boundary condition at the outlet£ L) by the
nonlinear radiation boundary condition at the top of page \8&h

o = 107° (o = radiation heat transfer coefficient) and repeat the prob-
lem. You will need to reset the variable LINEAR to .FALSE. lfoe
cation method only), and FDIFF to .TRUE..
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. Repeat the problem with no conductian= 0. Now this is the hyper-
bolic transport problem of Example 8.1 (p153), and theraukhnow
be "no” boundary condition at the outlet, since it is first@rth space.
Note that without conduction (diffusion of heat), the distouity in
the derivative is not smoothed out now, but simply transggbfbrward
with velocity v.
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