Factoring Polynomials – Intermediate Algebra

Fact – If a polynomial cannot be factored it is said to be prime.

**Fact** – The greatest common factor (GCF) is the largest common factor shared in common with all the terms of the polynomial.

Examples: Factor out the GCF.

1.  $6a^2 + 10a$ 

 $G_{a}^{2} + 10a = 2c(3a + 15)$ 

(a': 2-3·a·a-) 3a 10a = 2.5.a -> 5 GCF = 2c

N

2. 
$$8x^{3}y^{2} - 7x^{2}y$$
  
GCF = Xy  
 $8x^{3}y^{2} - 7x^{2}y = Xy(8xy - 7)$ 

3. 
$$10m^2 + 4m - 2$$

GCF=2 
$$10m^2 + 4m^2 = 2(5m^2 + 2m - 1)$$

4. 
$$\frac{3y(y+4) - 5(y+4)}{7}$$
  
GCF =  $y+4$   
 $3y(y+4) - 5(y+4) = (y+4)(3y-5)$ 

Factor by Grouping – If a polynomial has four terms, try these steps:

- Factor out the GCF
- -> Group the first two terms and the last two terms.
- → Factor out the GCF for the first two terms.
- Factor out the GCF for the last two terms.
  - Factor out the GCF of the remaining expression.

Examples: Factor by grouping.



Factoring Quadratics of the form  $x^2 + bx + c$ .

- Find two numbers, *m* and *n*, that multiply to give *c* and add to give *b*.
- The quadratic will factor as (x + m)(x + n)
- Hints: The sign of *c* will tell you if the two numbers are the same sign or opposite signs; the sign of *b* tells you
  - The sign of the numbers if they are the same (*c* is positive).
  - The sign of the bigger number if they are different (*c* is negative).

Examples: Factor the following. 시

1. 
$$x^2 + 9x + 14$$
  
1.  $x^2 + 9x + 14$   
1.  $x^2 + 14$   

 $\chi^{2}$  +Gx +/4 = (x + 2)(x + 7)



- Factor out the GCF.
- → Multiply *a* and *c* together.
- → Find factors of *ac* that sum to *b*.
  - Rewrite the middle (bx) term using the factors from step 3.
  - Group and factor out what is in common.

Examples: Factor the following.



3. 
$$6x^{2} + x - 35$$
  
 $(-35)^{2} - \frac{10}{10} + 1$   
 $-\frac{15}{10} + 1$   
 $-\frac{15}{10} + 1$   
 $-\frac{15}{10} + 1$   
 $-\frac{15}{10} + 1$   
 $(-3x - 7) + 5(-3x - 7)$   
 $(-3x - 7)(-7x + 3)$   
 $(-3x - 7)(-7x + 3)$ 

| 4(3)=12-7 | (1) = 1 + 1 + 1 + 2  |
|-----------|----------------------|
| - J-4 -7  | $\chi(qx-s)=r(qx-s)$ |
|           | ((4x-3)(x-1))        |
| I         |                      |

$$\begin{array}{rcl} 3(4) & 3(1(5) & 3(1)) \\ 5. & 12x^{3} - 87x^{2} + 21x & = & 3x \left( 4|x^{2} - 29x + 7 \right) \\ G(f = 3x) & & 3x \left( \frac{4|x^{2} - 1x - 29x + 7}{3x \left( \frac{4|x^{2} - 1x - 29x + 7}{3x \left( \frac{4|x - 1}{3x - 1} \right) - 7(4|x - 1) \right)} \\ & & 3x \left( \frac{1}{3x \left( \frac{4|x - 1}{3x - 1} \right) - 7(4|x - 1) \right) \\ & & & 3x \left( \frac{4|x - 1}{3x - 1} \right) \end{array}$$