Factoring Polynomials - Intermediate Algebra
Fact - If a polynomial cannot be factored it is said to be prime.
Fact - The greatest common factor (GCF) is the largest common factor shared in common with all the terms of the polynomial.

Examples: Factor out the GCF.

$$
6 a^{2}+10 a=2 a(3 a+5)
$$

$$
\begin{gathered}
6 a^{2}=2 \cdot 3 \cdot a \cdot a-3 a \\
10 a=2 \cdot 5 \cdot a \rightarrow 5 \\
G C F=2 a
\end{gathered}
$$

1. $6 a^{2}+10 a$
2. $8 x^{3} \underline{y}^{2}-7 x^{2} y$

$$
G C F=x^{2} y \quad 8 x^{3} y^{2}-7 x^{2} y=x^{2} y(8 x y-7)
$$

3. $10 m^{2}+4 m-2$

$$
C C F=2 \quad 10 m^{2}+4 m-2=2\left(5 m^{2}+2 m-1\right)
$$

4. $3 y(\hat{y+4)}-5(\hat{y+4)}$

$$
G_{C F F}=y+1
$$

$$
3 y(y+4)-5(y+4)=(y+4)(3 y-5)
$$

Factor by Grouping - If a polynomial has four terms, try these steps:

- Factor out the GCF
-) - Group the first two terms and the last two terms.
\rightarrow - Factor out the GCF for the first two terms.
\rightarrow - Factor out the GCF for the last two terms.
- Factor out the GCF of the remaining expression.

Examples: Factor by grouping.

1. $6 p^{2}-10 p+15 p-25$

2. $8 m^{2}+12 m n-10 m n-15 n^{2}$

Factoring Quadratics of the form $x^{2}+b x+c$.

- Find two numbers, m and n, that multiply to give c and add to give b.
- The quadratic will factor as $(x+m)(x+n)$
- Hints: The sign of c will tell you if the two numbers are the same sign or opposite signs; the sign of b tells you
- The sign of the numbers if they are the same (c is positive).
- The sign of the bigger number if they are different (c is negative).

Examples: Factor the following. M

1. $x^{2}+9 x+14$

$$
x^{2}+9 x+14=(x+2)(x+7)
$$

2. $x^{2}+8 x+15$

Bonn $x^{2}+5 x-6=(x+6)(x-1)$

Bonus

AC Method of Factoring Quadratics - The standard form of a quadratic is $a x^{2}+b x+c$.

- Factor out the GCF.
\rightarrow • Multiply a and c together.
\rightarrow - Find factors of $a c$ that sum to b.
- Rewrite the middle (bx) term using the factors from step 3.
- Group and factor out what is in common.

Examples: Factor the following.
2. $6 x^{2}+11 x y+3 y^{2}$

4. $4 x^{2}-7 x+3$ (4 , $3121 x^{2}-3 x-4 x+3$

$$
\begin{aligned}
& 4(3)=12-7 \\
& -3.4-1 \\
& (4 x-3)(x-1)
\end{aligned}
$$

$$
\begin{aligned}
& 3(4) 3(x) 3(1) \\
& \text { 5. } 12 x^{3}-87 x^{2}+21 x=3 x\left(4 x^{2}-29 x+7\right) \\
& G C F=3 x \\
& 3 x\left(4 x^{2}-1 x-28 x+7\right) \\
& \begin{array}{c}
4(7)=\left.28\right|^{-1-25}-29 \\
m^{A}
\end{array} \\
& 3 x(4 x-1)(x-7)
\end{aligned}
$$

