Solving Quadratic Equations by Using the Quadratic Formula

Fact: The solutions to $ax^2 + bx + c = 0$ are given by the quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Steps to Solving Quadratic Equations Using the Quadratic Formula:

- 1. Set the quadratic equal to zero.
- 2. Put the quadratic in standard form.
- 3. Substitute values for *a*, *b*, and *c* into the quadratic formula.
- 4. Simplify the quadratic formula radical first, then fraction last.
- 5. Check answers in the original equation.

Examples: Solve using the formula.

1.
$$4x^{2} + 3x - 10 = 0$$

 $C = 4$ $b = 3$ $c = -10$
 $\chi = \frac{-3 \pm 1169}{8}$
 $\chi = -\frac{3 \pm 11}{8} = \frac{10}{8} \left(\frac{5}{4} - \chi\right)$
 $\chi = -\frac{3 \pm 13}{8}$
 $\chi = -\frac{3 \pm 13}{8} = -\frac{16}{8} = -\frac{1}{2} = \chi$

1-

2.
$$-2h^{2} - 7h = -9$$

 $-2h^{2} - 7h + 9 = 0$
 $a = -2b = -7c = 9$
 $h = \frac{-(-7)\pm\sqrt{(-7)^{2} - 4/(7)(-7)}}{2(-7)}$
 $h = \frac{-1}{-4}$
 $h = \frac{-1}{-4}$
 $h = \frac{-1}{-4}$
 $h = \frac{-1}{-4}$
 $\frac{-1}{-4} = \frac{-4}{-4}$
 $\frac{-2}{-2} = h$
 $\frac{-2}{-2} = h$

3.
$$2x^{2} + 13x + 15 = 0$$

 $C_{x} = 2$ $b = 13$ $c = 15$
 $\chi = -\frac{(13)}{4} + \sqrt{(13)^{2} - \frac{1}{2}(2)(15)}$
 $\chi = -\frac{13 \pm \sqrt{45}}{4}$
 $\chi = -\frac{13 \pm \sqrt{45}}{4}$

4.
$$1.5x^{2} + 2 = -6.5x$$

 $|.5x^{2} + (.5x + 2 = 0)$
 $G = 1.5$ $b : (.5 - c = 2)$
 $\chi = -\frac{(.5)^{\frac{1}{2}}\sqrt{30.15}}{3}$
 $\chi = -\frac{(.5)^{\frac{1}{2}}\sqrt{30.15}}{3}$

Examples: Solve using the square root property, by factoring, or with the quadratic formula.

1.
$$4x^{3} + 5x^{2} - 6x = 0$$

 $\chi(4x^{3} + 5x - 6) = D$
 $\chi=0$ or $4x^{2} + 5x - 6 = 0$
 $g = 4$ $5 = 5$ $c = -6$
 $\chi = \frac{-(5) \pm \sqrt{(5)^{3} - 4(4)^{3} - 6}}{2(4)}$ $\chi = -\frac{5 \pm \sqrt{14}}{8}$ $-\frac{5 \pm 11}{8} = \frac{6}{8} = \frac{3}{4} = \frac{3}{4}$
 $\chi = -\frac{5 \pm 11}{8} = -\frac{16}{8} = -\frac{16}{8} = -\frac{2 \pm 3}{8}$

2.
$$6p^{2} + 15 = 21$$

 $-15 - 15$
 $\frac{6p^{2}}{6} = \frac{6}{6}$
 $p^{2} = 1$
 $p = \pm \sqrt{1}$ -7 $p = \pm 1$ $p = -1, 1$

3.
$$k^{2} + 6k = -5$$

Feen $\frac{f_{cc}cbr}{k^{2} + (k + 5) = 0}$
Feen $k^{2} + (k + 5) = 0$
Feen $(k + 5)(k + 1) = 0$
Feen $(k$

•