Graphing Quadratics from Standard Form

$$
f(x)=a x^{2}+b x+c
$$

Fact: The graph of every quadratic has the shape of a parabola.
Better Fact: We can use the standard form of a quadratic to find all the information we need to graph the corresponding parabola.

Steps to Graphing a Quadratic Function from the Standard Form

1. Determine whether the graph opens up $(a>0)$ or down $(a<0)$.
2. Find the vertex and the equation of the axis of symmetry.

The vertex is found at $x=\frac{-b}{2 a}$ and the equation of the axis of symmetry is the same.
3. Find the vertical intercept. (This is when input is 0 , so vertical intercept is $(0, c)$)
4. Find the horizontal intercepts, if any. (These are found by solving $a x^{2}+b x+c=0$)
5. Plot the points you found in steps 2 through 4. Plot their symmetric points and sketch the graph. (Find an additional pair of symmetric points if needed.) \rightarrow double vertex x

Examples: Sketch the graph of the following.

1. $f(x)=1.5 x^{2}-9 x+7.5$

$$
\begin{aligned}
& a=1.5 \quad b=-9 \quad c=7.5^{-} \\
& \begin{array}{l}
\text { opens up } \\
\text { vertex } x=-\frac{b}{2 c}=\frac{-(-9)}{2(1.5)}=\frac{c}{3}=3
\end{array} \\
& \begin{array}{rl}
\text { green }(3-6) \\
\text { axis of } x=3 & x(3)
\end{array}=1.5(3)^{7}-9(3)+7.5 \\
& =13.5-27+7.5 \\
& =-13.5+7.5 \\
& =-6 \\
& \text { bul var. int }(0, c)=(0, n-\cdots) \\
& \text { hoist int } 0=1.5 x^{2}-9 x+7,5^{?} \text { ? ? } \mathrm{eh}
\end{aligned}
$$

$$
\frac{(-6,-6)}{\text { A.0.5. } x=-6}
$$

vertical intercept $(0,-15)$
Symmetric to vertical intercept

$$
(-12,-15)
$$

3. $f(x)=2 x^{2}-12 x+5$
$\cup \quad a=2 \quad b=-12 \quad c=5$
vestex $x=\frac{-b}{2 a}=\frac{-(-12)}{2(2)}=\frac{12}{4}=3$
$(3,-13) \quad y=18-36+5=-13$
A.O.S.

$$
x=3
$$

$$
\begin{aligned}
& 0= 2 x^{2}-12 x+5+3 \\
&(2 x-1)(x-5)
\end{aligned}
$$

biscriment

$$
\begin{aligned}
& b^{2}-y_{a c}=194-4(2)(5) \\
&=141-40-104) \text { exact } \\
& \text { intesus }
\end{aligned}
$$

4. $f(x)=-0.5 x^{2}+4 x-10$
vertex $x=\frac{-b}{2 c}=\frac{-(4)}{2(-0.5)}=\frac{-4}{-1}=4$

$$
y=-.5(4)^{2}+4(4)-10=-2
$$

$(4,-2)$
A.OS. $x=4 \quad y$-int $(0,-10)$

