Exponential Functions: Patterns of Growth and Decay
Definition - A basic exponential function can be written in the form $f(x)=a(b)^{x}$ where a and b are real numbers $a \neq 0, b>0$, and $b \neq 1$. The constant b is called the base of an exponential function.

Example: The number of ants at a picnic is growing rapidly. At 11:00 AM, 5 ants find the picnic. Each hour after 11:00 AM, 3 times as many ants have found the picnic. Let $A(h)$ represent the number of ants at the picnic h hours after 11:00 AM. Start at Il am
a) Write an equation for a model of $A(h)$

$$
A(h)=5(3)^{h}
$$

b) Estimate numerically when 11,000 ants will be at the picnic.

$$
\begin{aligned}
& A(5)=1215 \\
& A(8)=32805
\end{aligned}
$$

about 7 hours later (6 pm) there will be nearly 11060 ants
c) How many ants will be at the picnic at 11:00 PM? 12 hour later

$$
A(12)=5(3)^{12}=2,657,205 \quad h=12
$$

$$
y=a(b)^{x}
$$

Example: A certain bacteria will double every 15 minutes. If a sample starts with 3 bacteria, find the following.
double every

$$
c=3
$$

a) Find an equation for a model for the number of bacteria after h hours.

$$
B(h)=3(2)-\sum_{2}
$$

b) Find an equation for a model for the number of bacteria after n 15-minute intervals.

$$
B(n)=3(2)^{\mathrm{m}}
$$

c) Use your models to estimate the number of bacteria present after 5 hours.

$$
\rightarrow 5 \text { hours is }
$$

$\downarrow h=5$

$$
\begin{aligned}
& -h=5 \\
& B(5)=3(2)^{(4 \times 5)}=3(2)^{20}=3,145,728=B(20)=3(2)^{20}
\end{aligned}
$$

Example: An isotope of hydrogen ${ }^{3} H$ has a half-life of about 4500 days.
a) Find an equation for a model for the amount of ${ }^{3} \mathrm{H}$ remaining from a sample of $500{ }^{3} \mathrm{H}$ atoms.

$$
H(d)=500\left(\frac{1}{2}\right)^{d / 500}
$$

4500 dey s to get $1 / 2$
c) Estimate the amount of ${ }^{3} \mathrm{H}$ remaining after 50 years.

Examples: Use the following tables to find exponential models of the given data.
1.

2.

x	0	1	2	3	4
$f(x)$	25	30	36	43.2	51.84

x	0	1	2	3	4
$f(x)$	3200	800	200	50	12.5

3.

$$
f(x)=20(3)^{x}
$$

x	0	1	2	3	4
$f(x)$	3200	800	200	50	12.5

$$
f(x)=3200\left(\frac{1}{4}\right)^{x}
$$

$$
y=a(b)^{x}
$$

$$
\begin{aligned}
& c=\text { initial value } /(0, a) \\
& b=\frac{\text { base }}{\text { we multiplier }}=\text { amount } \\
& \text { by to get next }
\end{aligned}
$$

$$
\begin{aligned}
& \approx 30 \text { atoms renin }
\end{aligned}
$$

