Rules for Exponents:

1. $x^{m} \cdot x^{n}=x^{m+n}$
2. $\frac{x^{m}}{x^{n}}=x^{m-n}$
3. $\left(x^{m}\right)^{n}=x^{m n}$

4. $(x y)^{m}=x^{m} y^{m}$
5. $\left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}}$
6. $x^{0}=1$ for $x \neq 0$
7. $x^{-n}=\frac{1}{x^{n}}, x \neq 0 \quad \frac{1}{x^{-n}}=\frac{x^{n}}{1}$
8. $x^{1 / n}=\sqrt[n]{x}$ if n is even $x \geq 0$

Property of exponentials: If $a^{x}=a^{y}$ then $x=y$.
Examples: Solve the exponential equations by inspection or trial and error.
a) $5^{x}=125$

$$
5^{x}=5^{3} \quad x=3
$$

$$
\begin{gathered}
125=5^{3} \\
125 \\
525
\end{gathered}
$$

b) $4^{x}=16384$

$$
4^{x}=4^{7}
$$

c) $\frac{1}{100}=10^{x}$

$$
10^{-2}=10^{x}
$$

$$
\frac{1}{100}=\frac{1}{10^{2}}=10^{-2}
$$

d) $3^{a}=\frac{1}{27}$

$$
3^{a}=3^{-3} \text { so } a=-3
$$

$$
\frac{1}{27}=\frac{1}{3^{3}}=3^{-3}
$$

Similar to solving absolute value equations, we want to isolate the exponential part to solve exponential equations.

$$
\left.\begin{array}{l}
3 y=192 \\
\div 3 \\
y=\frac{182}{3}
\end{array}\right\}
$$

e) $\frac{3(4)^{x}}{3}=\frac{192}{3}$

$$
44^{x}=64
$$

$$
4^{x}=4^{3}
$$

f) $12(3)^{x}-240=2676$

$$
\begin{aligned}
& \frac{12\left(33^{x}\right.}{12}=\frac{2916}{12} \\
& 3^{x}=243
\end{aligned} \quad 3^{x}=3^{5}
$$

g) $81(3)^{t}+12=15$
$-12-12$
$\frac{81(3)^{2}}{81}=\frac{3}{81}$

