Graphing Exponential Functions
Fact: Exponential functions have graphs that contain a horizontal asymptote. A horizontal asymptote is a horizontal line that the graph gets increasingly close to as the values of x get increasingly large positive or negative.

For an exponential function given by $f(x)=a(b)^{x}$, with $a \neq 0$ and $b>0, b \neq 1$ we have four possible graphs:

- If $a>0$ and $0<b<1$ the graph is decreasing and above the x-axis ire. $y=2\left(\frac{1}{3}\right)^{x}$

- If $a>0$ and $b>1$ the graph is increasing and above the x -axis
- If $a<0$ and $0<b<1$ the graph is increasing and below the x-axis

$$
y=-3\left(\frac{1}{2}\right)^{x} \xrightarrow{\square}
$$

- If $a<0$ and $b>1$ the graph is decreasing and below the x-axis.

Examples: Sketch the graph of the following functions by hand. Explain what the values of a and b tell you about this graph. Also, find the domain and range of each function along with the equation of the horizontal asymptote.

3. $f(x)=-7(3)^{x}$

$$
a=-7
$$

$$
b=3
$$

x	y	
-1	$-7 / 3$	5
0	-7	\vdots
1	-21	2×3
		2×3

$$
\begin{gathered}
\text { Domain }(-\infty, \infty) \\
\text { Range }(-\infty, 0) \\
y=0
\end{gathered}
$$

$$
\begin{aligned}
& \text { 2. } f(x)=300\left(\frac{3}{4}\right)^{x} \\
& a=300 \\
& b=\frac{3}{4}
\end{aligned}
$$

4. $f(x)=-100\left(\frac{1}{4}\right)^{x}$

$$
\begin{aligned}
& a=-100 \\
& b=\frac{1}{4} \\
& x \\
& x \\
& \hline-2 \\
& -1 \\
& -1600 \\
& 0 \\
& 1 \\
& 1 \\
& 2
\end{aligned}-\frac{-100}{2} \begin{aligned}
& -15 / 4
\end{aligned}
$$

Domain $(-\infty, \infty)$
$\operatorname{Range}(-\infty, 0)$
hosit. asy $y=0$

