Graphing Exponential Functions

Fact: Exponential functions have graphs that contain a horizontal asymptote. A horizontal asymptote is a horizontal line that the graph gets increasingly close to as the values of x get increasingly large positive or negative.

For an exponential function given by $f(x) = a(b)^x$, with $a \neq 0$ and $b > 0, b \neq 1$ we have four possible graphs:

- If a > 0 and 0 < b < 1 the graph is decreasing and above the x-axis $\frac{1}{3}$
- If a > 0 and b > 1 the graph is increasing and above the x-axis
- If a < 0 and 0 < b < 1 the graph is increasing and below the x-axis

y=-3(1/2)×

• If a < 0 and 0 < b < 1 the graph is increasing and below the x-ax $\int (a^2)^{x} \int (a^2)^{x} db = 1$ the graph is decreasing and below the x-axis.

Examples: Sketch the graph of the following functions by hand. Explain what the values of a and b tell you about this graph. Also, find the domain and range of each function along with the equation of the horizontal asymptote.

1.
$$f(x)=4(5)^{x}$$

 $a=4$ $\frac{x}{5}$ $\frac{y}{5}$ $\frac{y}{5}$

2.
$$f(x) = 300 \left(\frac{3}{4}\right)^{x}$$

 $Q = \frac{3}{4}$
 $\frac{1}{1}$
 $\frac{1}{400}$
 $\frac{1}{215}$
 $\frac{1}{215}$
 $\frac{1}{1}$
 \frac

3.
$$f(x) = -7(3)^{x}$$

 $a = -7$
 $b = 3$
 $\frac{x}{5} + \frac{5}{5} + \frac{5}{5}$
 $0 = -7$
 $1 = -21$
 $3x^{5}$

4.
$$f(x) = -100 \left(\frac{1}{4}\right)^{x}$$

 $\int f(x) = -100 \left(\frac{1}{4}\right)^{x}$
 $\int f(x) = -100 \left(\frac{1}{4}\right)^{x}$
 $\int f(x) = -100 \left(\frac{1}{4}\right)^{x}$
 $\int \frac{1}{-2} \left(\frac{1}{-100}\right)^{x}$
 $\int \frac{1}{-25} \left(\frac{1}{-25}\right)^{x}$
 $\int \frac{1}{4} \left(\frac{1}{-25}\right)^{x}$

