Exponential Growth and Decay Rates and Compounding Interest

$$
y=a(b)^{x}
$$

Fact - Exponential growth and decay can be modeled by an exponential function where the base multiplier $b$ tells us specific information about the growth or decay.

Definition - Growth or Decay Rate - The percentage change in a quantity per 1 unit of time is called the growth or decay rate $r$. The relationship between $r$ and $b$ is given by $b=1+r$.

Example: A swarm of 120 fruit flies in an experiment grows at a rate of about $9.8 \%$ per day.
a) Find an equation for a model for the number of fruit flies in the swarm.

$$
\left.F(x)=120(1.088)^{x} \quad x=7 \times \sqrt{x}\right]
$$

$$
\begin{aligned}
& b=1+0.098 \\
& b=1.098
\end{aligned}
$$

b) Estimate the number of fruit flies in the swarm after 20 days.

$$
F(20)=120(1.098)^{20}=778 \text { fist flies }
$$

$$
y=a(b)^{x} \quad b=1+c
$$

Example: According to the CIA World Factbook 2008, the population of Liberia can be modeled by $P(t)=3.1(1.027)^{t}$, where $P(t)$ is the population of Liberia in millions, $t$ years since 2005.
a) Use this model to estimate the population of Liberia in 2015.

$$
\begin{aligned}
& P(10)=3.1(1.027)^{10}=4.05 \\
& {[\text { about } 4 \text { million peyote in 20055 }]^{t=10} \begin{array}{r}
\frac{-7005}{t-105} \\
t=10
\end{array} }
\end{aligned}
$$

b) According to this model, what is the growth rate of Liberia's population?
firer


$$
\rightarrow 2.7 \% \text { growth rate }
$$

Example: The Gross Domestic Product (GDP) of Madagascar in 2005 was approximately 16.9 billion US\$ and has been growing by a rate of about 6\% per year.
a) Find an equation for a model for the GDP of Madagascar.

$$
\begin{aligned}
& b=1+r \\
& b=1+.06=1.06
\end{aligned}
$$

$$
\left[M(t)=16.9(1.06)^{t}\right.
$$

$$
t \operatorname{sine} 2005
$$

b) Use your model to estimate the GDP of Madagascar in 2010.

$$
\begin{aligned}
& 2010 \text { is } 5^{5} \text { yr later... } \\
& m(5)=16.9(1.06)^{5}=\$ 22.6 \text { billion }
\end{aligned}
$$

Formula - For compounding interest problems, we use the formula $A=P\left(1+\frac{r}{n}\right)^{(n t)}$, were $A$ is the future amount, $P$ is the principal amount invested, $r$ is the interest rate as a decimal, $t$ is time in years, and $n$ is the number of compounding periods per year.

Example: If $\$ 30,000$ is invested in a savings account that pays $4 \%$ annual interest compounded daily, what will the account balance be after 6 years?

$$
\begin{aligned}
& P=30,000 \\
& r=0.04 \\
& n=365 \\
& t=6
\end{aligned}
$$



Definition - The number $e$ is an irrational number that is $e \approx 2.7182818$.
Fact - When interest is compounded continuously, we use the formula $A=P e^{(r t)}$.

Example: If the same $\$ 30,000$ were invested in an account that pays $4 \%$ annual interest compounded continuously, how much would you have after 6 years?

$$
\begin{aligned}
A=P e^{(-1)} & =30,0000 e^{(0.014)} \\
& =38,137.47
\end{aligned}
$$

$$
r=0.01
$$

$$
t=6
$$

