Definition - $y=\underline{\log _{b}(x)}$ is the power to which you raise b in order to get x.

Fact $-y=\log _{b}(x)$ is the same as $b^{y}=x$. So all a logarithm is, is an exponent.
Fact - The base most commonly used is base $b=10$ so this is called the common logarithm. It is used so frequently that we do not even write the b value. In the sciences, the most natural base to use is $b=e$ so this is called the natural logarithm. As it is so special to the sciences it has a special notation: $\log _{e} x=\ln x$. Please note that these are " L ' s " and not "I's" as the word logarithm starts with an L .

$$
\log _{010} x=\log x
$$

Examples: Evaluate the following logarithms.

1. $\log _{3} 9 \rightarrow$ What power do I put un 3 to get 9?

$$
\log _{3} 9=2 \text { because } 3^{2}=9
$$

2. $\log 10,000$

3. $\log _{5} 125$

$$
5^{?}=125 \quad ?=(3) \text { because } 5^{3}=125
$$

4. $\log _{2} 16$

$$
\log _{2} 16=\text { (4) blk } i^{4}=16
$$

Properties of Logarithms

1. The logarithm of 1 for any base will always equal zero. $\log _{b} 1=0$ since $b^{0}=1 \quad b \neq 0$
2. The logarithm of its base is always equal to $1 . \log _{b} b=1$ since $b^{1}=b$
3. The logarithm of the base to a power is just that power. $\log _{b}\left(b^{m}\right)=m$ since $b^{m}=b^{m}$. What dor ${ }_{\text {exp }} b$ to get b^{m} ?
Since any base b is possible for $b>0$, it would be impossible to have all of them on the calculator. We can use the change of base formula in order to evaluate any logarithm.

Change of Base Formula - $\log _{b} a=\frac{\log a}{\log b}=\frac{\log _{c} a}{\log _{c} b}$ for any base c.

$$
\log _{b} a=\frac{\ln a}{\ln b}
$$

Examples: Evaluate the following logarithms. Round your answers to three decimal places.

$$
\begin{aligned}
& \text { 1. } \log _{3} 470=5.600 \quad \frac{\log (470)}{\log (3)}=5.600 \quad \frac{\ln (470)}{\ln (3)}=5.600 \\
& \text { 2. } \log _{7} 3.2=\frac{\ln 3.2}{\ln 7}=0.598 \\
& \text { 3. } \log _{11} 11=0.846
\end{aligned}
$$

Examples: Rewrite the equation into the opposite form.

1. $6^{5}=7776$

$$
5=\log _{6} 7776
$$

$$
\begin{aligned}
& \text { 2. } \log _{7} 2401=4 \\
& 7^{4}=2401
\end{aligned}
$$

to get 7776 .

Fact: To solve a logarithmic equation, we switch to exponential form.

Examples: Solve.

1. $\log x=4$

$$
\log _{10} x=4 \rightarrow 10^{4}=x
$$

2. $\log _{5} x=3$

3. $\log _{2}(5 x)=6$

$$
\begin{aligned}
& 2^{6}=5 x \\
& \frac{64}{5}=\frac{5 x}{5} \rightarrow x=\frac{64}{5}=12.8
\end{aligned}
$$

