Graphing Logarithmic Functions - Intermediate Algebra

$$
y=\log _{b} x \leftrightarrow b^{y}=x
$$

Fact: Logarithms and Exponential functions are inverses of each other.
Fact: The graphs of inverse functions are symmetric across the line $y=x$.

Examples: Graph each logarithmic function by first graphing its corresponding exponential function.

1. $\frac{f(x)=\log _{3} x}{X}$

$$
y=3^{x}
$$

x	y
-1	$J^{\prime}=\frac{1}{3}$
0	$3^{\prime}=1$
1	$3^{\prime}=3$

such
$x+y$$\frac{x}{x} y$

2. $g(x)=\log _{1 / 2} x$

$y=\left(\frac{1}{2}\right)^{x}$	$y=\log _{h} x$	
x	y	
-1	$\left(\frac{1}{2}\right)^{-1}=2^{\prime}=2$	$2 \mid y$
0	$\left(\frac{1}{2}\right)^{0}=1$	1
1	$\left(\frac{1}{2}\right)^{\prime}=\frac{1}{2}$	$1 / 2$

$$
\begin{array}{lll}
\text { 3. } & h(x)=\log _{5} x \\
y=5^{x} & y=\log _{5} x \\
x & y & x
\end{array} \quad y
$$

4. $f(x)=\log _{1 / 4} x$

$y=\left(\frac{1}{4}\right)^{x}$	$y=\log _{514} x$
x	y
-1	4
0	$\frac{x}{4}$
0	1
1	$1 / 4$
1	$1 / 4$

