Solving Exponential Equations - Intermediate Algebra

Steps: 1. Isolate the exponential part on one side of the equation.
2. Take the common logarithm of both sides of the equation.
3. Use the power property for logarithms to bring the exponent down to the front of the log.
4. Solve the equation by isolating the variable.

Examples: Solve, round to three decimal places.

2. $5(3)^{x+7}=30$
(1) Solute: $\div 5 \frac{5(3)^{x_{1}}}{5}=\frac{30}{5}$
(3) $(x+7) \log (3)=\log ^{6}(68)$
(2) $C^{6 m \operatorname{mon}} \log$

$$
\begin{aligned}
3^{x+7} & =386 \\
\log 3^{x+7} & =\log (50)
\end{aligned}
$$

(4)

3. $4^{2 x-5}=264$
iSolate $\checkmark \log : \log 4^{(x-5}=\log 264$

$$
\begin{array}{r}
4^{2 x-1}=y^{4} \\
2 x-5=4 \\
2 x=9 \\
x=9 / 2=4.5
\end{array}
$$

$$
\begin{aligned}
& x=\frac{1}{2}(\log (4)(4)+5) \\
& x=4.511
\end{aligned}
$$

$$
\begin{aligned}
& 4.5^{3 x}=5.6 \\
& \log 5^{3 x}=\log 5.6 \\
& 3 \times \log (5)=\log (5.6) \\
& x=\frac{\log (5.6)}{(3 \log (5))} \approx 0.356805
\end{aligned}
$$

$\frac{-\frac{P}{-E}}{\substack{n m)^{\prime \prime} \\ A S}}$

$$
\begin{aligned}
& \begin{array}{l}
5.2(8)^{x-2}= \\
2 \\
24 \\
8^{x-2}
\end{array}=12 \\
& \log 8^{x-2}=\log (12) \\
& (x-2)^{\log (8)}=\log (11)
\end{aligned} \quad\left\{\begin{array}{l}
x-2=\frac{\log (12)}{\log (8)} \\
x=\frac{\log (12)}{\log (8)}+2 \approx 3.19498
\end{array}\right.
$$

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
6.3^{x}-9=21 \\
3^{x}+3
\end{array} \\
=30
\end{array} \\
& \log 3^{x}=\log 30 \\
& x \log 3=\log 30 \\
& x=\frac{\log (30)}{\log (3)} \approx 3.095903274 \\
& \quad \text { exact }
\end{aligned}
$$

