Fundamentals of Graphing and Slope

Examples: Graph the equations by creating a table of values and plotting the points.

1. $y=2 x-6$

2. $y=x^{2}-8$

x	$y=2 x-6$	
-2	$y=2(-2)-6=-10$	$(-2,-10)$
-1	$y=2(-1)-6=-8$	$(-1,-8)$
0	$y=2(0)-6=-6$	$(0,-6)$
1	$y=2(1)-6=-4$	$(1,-11)$
2	$y=2(2)-6=-2$	$(2,-2)$

x	$y=x^{2}-8$
-2	$y=(-2)^{2}-8=-4$
-1	$y=(-1)^{2}-8=-7$
0	$y=(0)^{2}-8=-8$
1	$y=(1)^{2}-8=-7$
2	$y=(2)^{2}-8=-4$

Example: An equation for the total cost, C, in dollars for purchasing L lunch coolers is $C=45+3 L$.
a. Create a table of points that satisfy this equation.

$45+3()$
b. Create a graph for the equation using your points. Label your graph with units.

Slope - The ratio of vertical change and horizontal change of a line. The increase or decrease in y for a unit change in x. For a line going through the two distinct points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$,

$$
\text { slope }=\frac{\text { rise }}{\text { run }}=\frac{\text { change in } y}{\text { change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \cdot \frac{\text { numes stor }}{\text { denom. }}=\frac{\text { top }}{\text { bottom }}
$$

Slope also represents the amount the output variable is changing for every unit change in the input variable.

Examples: Find the slope

1. Use the graph to find the slope of the line.
a.

b.

$$
m=-\frac{3}{4}
$$

2. Use a table of values to find the slope of the line.

x	-4	-1	5	8			
y	z^{-24}	-16.5	-1.5	6			
2						2	2

$$
\begin{aligned}
& m=\frac{-(6.5244}{-1+(44)}=\frac{7.5}{3}=2.5 \\
& m=\frac{-1.5+(416.5)}{5+(t .)}=\frac{15}{6}=2.5
\end{aligned}
$$

3. Determine whether the table gives all points on a line.
a.

x	6	10	12	22
y	11	16	18.5	31

$$
\begin{aligned}
& m=\frac{18.5^{-}-11}{12-6}=\frac{7.5}{6}=1.25 \\
& m=\frac{31-16}{22-10}=\frac{15}{12}=1.25 \quad \text { yes all on }
\end{aligned}
$$

b.

$$
\begin{array}{rl|l|l|l|l|}
\begin{array}{ll|l|l|l}
\mathrm{x} & -3 & 2 & 4 & 8 \\
\hline y & 5.4 & 3.4 & 2.8 & 1 \\
\hline & & m & =\frac{2.8-3.4}{4-2}=\frac{-.6}{2}=-.3 \\
& m & =\frac{1-5.4}{8+(13)}=\frac{-4.4}{11}=-.4
\end{array}
\end{array}
$$

Linear Equations - An equation is linear if it has a constant rate of change (the slope is constant). That is, for every unit change in the input, the output has a constant amount of change.

Slope-intercept form of a line: $y=m x+b$

Slope - The increase or decrease in the output variable for a unit change in the input variable. In the slope-intercept form of a line, slope is represented by m.

Vertical Intercept - The point where the line crosses the vertical axis. In the slope-intercept form of a line, the vertical intercept is $(0, b)$. This is more frequently called the y-intercept.

Examples: Determine slope and y-intercept. Sketch using intercept and slope.

1. $y=3 x-7$

$$
m=3=\frac{3}{1}=\frac{13}{-21}
$$

$$
b=-7 \quad(0,-7)
$$

2. $y=-\frac{3}{4} x+\frac{1}{2}$

$$
\begin{aligned}
& M=-\frac{3}{4}=\frac{\operatorname{dov} 3}{r+4} \\
& b=\frac{1}{2} \rightarrow\left(0, \frac{1}{2}\right)
\end{aligned}
$$

3. $y=5$

$$
\begin{aligned}
& y=0 x+5 \\
& m=0=\frac{0}{1}=\frac{\text { up } 0}{2+1} \\
& b=5 \rightarrow(0,5)
\end{aligned}
$$

4. $y=\frac{3}{4} x-6$

$$
\begin{aligned}
& m=\frac{3}{4}=\frac{4,3}{n+4} \\
& b=-6 \quad(0,-6)
\end{aligned}
$$

5. $y=-2 x+7$

$$
\begin{aligned}
& y=-2 x+7 \\
& m=-2=-\frac{2}{1}=\frac{\operatorname{don} 2}{n+1} \\
& b=7 \quad(0,7)
\end{aligned}
$$

Examples: Find the slope of the model and explain its meaning in the situation.

1. The pressure inside a vacuum chamber can be represented by $P=35-0.07 s$, where P is the pressure in pounds per square inch (psi) of the vacuum chamber after being pumped down for s seconds.

$$
\begin{gathered}
m=-0.07 \\
\text { pressure is decreasing by } .07 \mathrm{psi} / \mathrm{sec}
\end{gathered}
$$

$$
m=\frac{\Delta b}{\Delta x}=\frac{p s i}{\sec }
$$

2. The cost for making tacos at a local street stand can be represented by $C=0.55 t+140.00$, where C is the cost in dollars to make tacos at the local street stand when t tacos are made.

$$
m=0.55
$$

cost per taco is \$0.55 to make
3. Let $C=4.5 p+1200$ be the total cost in dollars to produce p pizzas a day at a local pizzeria

$$
m=4.5 \quad \$ 4.50 / \text { pizza to produce }
$$

4. Let $D=\underline{0.28 t} t+5.59$ be the percentage of adults aged 18 years old and over in the United States that have been diagnosed with diabetes, t years since 2000.

$$
m=0.28
$$

$$
m=\frac{0}{t} \frac{y_{0} \text { cult }}{y^{c s}}
$$

diagnosis is increasing
at 0.28% per year

