Rational Functions - Intermediate Algebra
Definition - A rational expression is an expression of the form $\frac{P(x)}{Q(x)}$ where $P(x)$ and $Q(x)$ are polynomials and $Q(x) \neq 0$. The domain of a rational function consists of those values of x such that $Q(x) \neq 0$.

Fact - The domain of a rational function consists of all real numbers EXCEPT those that make the denominator zero.

To Find the Domain of a Rational Function:

1. Focus only on the denominator.
2. Factor the denominator completely.
3. Set the factors NOT equal to zero and solve.

Examples: Find the domain of the rational functions.

1. $f(x)=\frac{-20}{x}$

2. $f(x)=\frac{x-6}{x+7}$

3. $f(x)=\frac{x+17}{x+9}$

$$
\begin{aligned}
x+9 & \neq 0 \\
x & \neq-9
\end{aligned}
$$

4. $f(x)=\frac{3 x-1}{(2 x+1)(x-4)}$

$$
\substack { z+0 \\
\begin{subarray}{c}{x+0{ z + 0 \\
\begin{subarray} { c } { x + 0 } } \\
{p, i x} \end{subarray} \quad(2 x+1)(x-4) \neq 0
$$

5.

$$
\begin{aligned}
& f(x)=\frac{x-3}{(x-3)(5 x+11)} \\
& (x-3)(5 x+11) \neq 0 \\
& x-3 \neq 0 \quad 5 x+11 \neq 0 \\
& x \neq 3 \quad 5 x \neq-11 \\
& x \neq-1 / 5
\end{aligned}
$$

$$
\begin{gathered}
\begin{array}{c}
2 x+1 \neq 0 \\
-1 \\
2 x \neq-1 \\
x \neq-\frac{1}{2}
\end{array} \underset{\substack{x-y \neq 0 \\
x \neq 4}}{x \neq 4} \\
\left(-\infty,-\frac{1}{2}\right),\left(-\frac{1}{2}, 1,1\right),(4, \infty)
\end{gathered}
$$

$$
\left(-\infty,-\frac{11}{5}\right),\left(-\frac{11}{5}, 3\right),(3, \infty)
$$

6. $f(x)=\frac{3 x+6}{x^{2}+2 x}$

$$
\begin{aligned}
& x^{2}+2 x \neq 0 \\
& x(x+2) \neq 0 \\
& x \neq 0 \quad x+2 \neq 0
\end{aligned}
$$

7. $f(x)=\frac{4 x^{2}+3 x-8}{6 x^{2}-7 x-20}$

$$
\begin{aligned}
& 6 x^{2}-7 x-20=0 \\
& 6 x^{2}+8 x-15 x-20 \neq 0 \\
& 2 x(3 x+4)-5(3 x+4) \neq 0 \\
& (3 x+4)(2 x-5) \neq 0 \\
& 3 x+4 \neq 0 \quad 2 x-5 \neq 0 \\
& \frac{3 x-4}{\frac{3 x}{3} \neq-\frac{4}{3}} \frac{2 x+5}{\frac{2 x}{2} \neq 5} \\
& x \neq-4 / 3 \quad x \neq 5 / 2
\end{aligned}
$$

