Solving Rational Equations - Intermediate Algebra
Steps to solve:

1. State what values should be excluded by finding the domain of each expression.
2. Multiply both sides of the equation by the least common denominator.
3. Solve the remaining equation.
4. Check the answers) in the original equation.

Examples: Solve the rational equation.

1. $\frac{35}{x+3}=5$
$x+3 \neq 0$
$x \neq-3$

check

$$
\frac{35}{4+3}=\frac{35}{7}=5 v
$$

2. $\frac{8}{x+3}=7-\frac{6}{x+3}$

$$
\begin{aligned}
& \begin{array}{ll}
x+3 \neq 0 \\
x \neq-3
\end{array} \quad(x-5) \frac{8}{x+3}=(x+3) 7-\frac{6}{x+3}(x+3) \quad, \begin{array}{c}
8=7 x+15 \\
-15-15
\end{array} \quad \begin{array}{l}
\text { LbS } \\
\frac{8}{-1+3}=\frac{8}{2}=41
\end{array} \\
& 8=7 x+21-6 \quad \frac{-7}{7}=\frac{7 x}{7}-x=-1 \\
& \begin{array}{l}
\text { HS } \\
7-\frac{6}{-1+3}=7-\frac{6}{2}
\end{array} \\
& =7-3=4
\end{aligned}
$$

3. $\frac{4}{x-7}=\frac{8}{x-6}$

$$
\begin{array}{lr}
\begin{array}{ll}
x-7 \neq 0 \\
x \neq 7 & (x-7)(x-6) \\
x-6 \neq 0 & \frac{4}{x-7}
\end{array} & =\frac{8}{x-6} \frac{(x-7)(x-6)}{1} \\
x \neq 6 & 4(x-6)=8(x-7) \\
\angle C D=(x-7)(x-6) & 4 x-24=8 x-56
\end{array}
$$

$$
\begin{aligned}
4 x-24 & =8 x-56 \\
-4 x+56-4 x & +5 \\
\hline \frac{32}{4} & =\frac{4 x}{4} \\
8 & =x
\end{aligned}
$$

LIS

$$
\begin{aligned}
& \text { 4. } \frac{3}{a+2}+\frac{5 a}{a-3}=\frac{75}{a^{2}-a-6} \\
& (a-3)(a+2) \\
& L C D=(a-3)(a+1) \quad(a-3)\left(a+1+\frac{3}{c+1}+\frac{5 c}{c-3}(b-3)(a+1)=\frac{75}{(a-3)(a+2)}(\cos)(a+2)\right. \\
& \rightarrow a-3 \neq 0 ; a \neq 3 \\
& 3(a-3)+5 c(a+2)=75 \\
& \text { Cat } 2 \neq 0 \text {; } a \neq-2 \\
& 3 c-9+5 a^{2}+10 c=75 \\
& 5 a^{2}+13 a-9=75 \\
& 5 c^{2}+13 c-84=0 \\
& \begin{array}{rlrl}
5(-84) & =-420 \\
-5 & 13 \\
& 20 & 21 \\
-15 & 28 & 1
\end{array} \\
& (a-3)(5 a+28)=0 \\
& a-3=0 \text { or } 5 a+28=0 \\
& \begin{array}{ll}
c=3 & 5 a=28 \\
\text { extraneas } & a=28 / 5
\end{array}
\end{aligned}
$$

Example: It takes a garden hose 48 hours to fill a backyard pool. A fire hydrant can fill the same pool in 20 hours. How long will it take to fill the pool if both the garden hose and the fire hydrant are used?
hose 48 hours to fol - can do $\frac{1}{48}$ of job in 1 hour
hydrant 20 hers to fill - can do $\frac{1}{20}$ of job in 1 howe
Find time working
together
$t=$ Lime together

$$
\begin{gathered}
t \\
20=\overline{4} \cdot 5 \\
48=\overline{4} \cdot 12 \\
L C D=4 \cdot 5 \cdot 12 t=210 t
\end{gathered}
$$

$$
\begin{aligned}
240 \mathrm{t} & \frac{1}{48}+\frac{1}{20} \\
= & =\frac{1}{t} 240 t \\
5 t+12 t & =240 \\
17 t & =240 \\
t & =\frac{240}{17}=14.11764706
\end{aligned}
$$

Example: Jim working alone can paint a house in 30 hours. Mary working alone can paint a house in 24 hours. How long will it take if Jim and Mary work together to paint that house?

Jim 30 hes 1 jut

$$
120 t \frac{1}{30}+\frac{12 t}{24}=\frac{1}{t} 120 t
$$

Mary 24 hrs lob
Find t together

$$
\begin{aligned}
& t \\
& 24=6 \cdot 4 \\
& 30=6 \cdot 5 \\
& L C D=6 \cdot 4 \cdot 5 \cdot t=120 t
\end{aligned}
$$

$$
\begin{aligned}
& 4 t+5 t=120 \\
& 9 t=120 \\
& t=\frac{120}{9}=13.3 \overline{3} \\
& 13 \mathrm{~h} 20 \mathrm{~min} \text { because }
\end{aligned}
$$ $\frac{1}{3}=333$ of an hour is 20 mir .

