Radical Functions - Intermediate Algebra
Definition - A square root or nth root is called a radical expression, \sqrt{x} or $\sqrt[n]{x}$. The x is called the radicand, and n is the index. Square roots have an index of 2 , but the 2 is not written in the nook of the radical.

Fact - On our calculators we do have a button to give us nth roots (Math, $5: \sqrt[x]{ }$) but we could also use rational exponents. That is $\sqrt[n]{x}=x^{(1 / n)}$

Example: Given the function $f(x)=3.2 \sqrt[6]{x}$, find the following.

1. $f(45)=3.2 \sqrt[6]{45}=6.04$
2. Estimate numerically x such that $f(x)=16$.

Domain of Radical Functions: his even

- For even roots, set the radicand greater than or equal to zero to find the domain.
- For odd roots, the domain and range are both all real numbers.
'his odd

Examples: Find the domain and range of the following radical functions.

1. $h(x)=\sqrt{x+10}$

Fact $f(x)=\sqrt[\downarrow]{x 0} 0$

$$
\begin{array}{ll}
\text { Domain } & \text { Range } \\
x+10 \geqslant 0 & y \geqslant 0 \\
x \geqslant-10 & {[0, \infty)} \\
{[-10, \infty)} &
\end{array}
$$

$$
\begin{aligned}
& \text { 2. } g(x)=(9 \overline{x+5} \\
& 0:(-\infty, \infty) \quad R!(-\infty, \infty)
\end{aligned}
$$

3. $f(x)^{2}=0=9$

$$
\begin{array}{rlrl}
D! \\
8-x & \geqslant 0 & n![0, \infty) \\
-x & \geqslant-8 \\
-1 & =1 \\
x & \leq 8 \quad(-\infty, 8) &
\end{array}
$$

4. $f(x)$

$$
{ }^{2}=(\sqrt{3 x-2}(5)-
$$

D!

$$
\begin{aligned}
& 3 x-2 \geqslant 0 \\
& 3 x \geqslant 2 \\
& x \geqslant 2 / 3 \\
& {[1 / 3, \infty}
\end{aligned}
$$

5. $f(x)=\frac{9 \overline{x+1} \oplus 9}{}$

D!

$$
\begin{aligned}
& x+1 \geqslant 0 \\
& x \geqslant-1 \\
& {[-1, \infty)}
\end{aligned}
$$

nange ($-\infty, 9$)

