Solving Linear Inequalities - Intermediate Algebra
Solving linear inequalities is similar to solving linear equations with one major change: When you multiply or divide by a negative value, the direction of the inequality must flip. That's it, the entire secret. Why is that? Consider a number line:

Notice how the bigger number 5 is to the right of the number 2 ? But when you talk about negatives, the number that looks bigger, -5 is actually smaller than and hence left of -2 . When we multiply or divide by a negative, the inequality changes direction to account for this.

Examples: Solve the inequalities

1. $-6 b+10>40$

$$
\begin{array}{ll}
\frac{-10-10}{-6 b}>\frac{30}{96} \int_{\Theta l}^{\theta} & \text { interval } \\
b<-5 & \text { ines. } \\
(-\infty,-5)
\end{array}
$$

2. $8 g-12 \leq 3 g+2$

$$
\begin{array}{ll}
\frac{3 b+12-3 g+12}{5 g} \leq \frac{14}{5} & \text { interval } \\
\frac{14}{5} & \left(-\infty, \frac{14}{5}\right]
\end{array}
$$

3. $-3 x+8>x-4$

$$
\begin{aligned}
& \frac{-x \quad-x}{-4 x+8>-4} \\
& \frac{-8-8}{-8} \\
& \frac{-4 x}{-4} \int \frac{-12}{-4} \\
& x<3
\end{aligned}
$$

5. $-\frac{2 g}{9}+12>4$

$$
\begin{aligned}
& \frac{9-12-12}{\left(\frac{-9}{2}\right)-\frac{89}{9}>-\frac{8}{1}\left(\frac{-9}{2}\right)} \\
& \quad g<\frac{72}{2} \rightarrow g<36 \quad(-\infty, 36)
\end{aligned}
$$

6.

$$
\begin{aligned}
& \underbrace{\frac{2}{3}(P+4)}<\overbrace{-\frac{5}{7}(2 P-12)}^{2} \\
& \frac{2}{3} P+\frac{2}{3}\left(\frac{4}{1}\right)<-\frac{5}{7}(2 P)-\left(-\frac{5}{7}\right)(11)
\end{aligned}
$$

$$
\begin{aligned}
L C D & =3.7 \\
& =71
\end{aligned}
$$

$$
=21
$$

$$
\frac{2}{3} p+\frac{8}{3}<-\frac{10 p}{7}+\frac{60}{7}
$$

$$
\begin{aligned}
& \text { 4. } 1.25 x-2 \geq 2 x-5 \\
& \frac{-2 x-2 x}{-0.75 x-2 \geqslant-5} \\
& \frac{+2+2}{-0.75 x \geqslant-3} \\
& \begin{array}{cc}
-\frac{0.75 x}{0.75} & \int_{0}^{00.75} \\
x & (-\infty, 4)
\end{array}
\end{aligned}
$$

