Rules for Exponents – Intermediate Algebra

P SE SMOJ

We use exponents as a short-hand notation for repeated multiplication. They allow us to write $2x2x2x2x2x2x2x2x2 = 2^7$ which is a much more compact form. Every exponential expression has two parts: the base, which is the number repeatedly multiplied, and the exponent, which tells you how many times to multiply.

Product Rule - $x^m x^n = x^{m+n}$ When multiplying exponential expressions that have the same base, add the exponents. $\chi \cdot \chi = (\chi \times \chi \times \chi) = \chi$

Quotient Rule - $\frac{x^m}{x^n} = x^{m-n}$ When dividing exponential expressions that have the same base, subtract exponents.

Power Rule - $(x^m)^n = x^{mn}$ When raising an exponential expression to another power, multiply the exponents. $(\chi^{\gamma})^{\gamma} = \chi^{\gamma} \cdot \chi^{\gamma} \cdot \chi^{\gamma} = \chi^{0}$

Examples: Simplify.

1.
$$(\frac{4w^{6}x^{2}}{U})(\underline{8wx^{9}}) = (32\omega^{7}x^{"})$$

 u^{1}
 u^{1}
2. $\frac{40t^{11}w^{14}}{5t^{3}w^{9}} \Rightarrow \frac{40}{5} \frac{t^{"}}{t^{7}} \frac{u^{1}}{u^{5}} = 8t^{"-3} \frac{14}{5} = 8t^{-3}$

3.
$$\frac{24b^{18}c^4}{14b^{10}c^3}$$
 $\frac{24}{14} \frac{b^{18}}{b^{10}} \frac{c^4}{c^3}$ $\frac{12b^6c}{7} = \frac{12b^6c}{7}$

Powers of Products and Quotients - In raising an expression to a power, that power can be applied over

multiplication and division. $(xy)^m = x^m y^m$ and $\left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}$

Examples: Simplify.

1. $(3x^{5}y^{2}z)^{3}$ $3^{1}(x)^{1}(y^{1})^{3}(z^{1$

3.
$$(3x^2y^5)(2x^3y)^3$$

 $(3x^3y^5)(2x^3y)^3$
 $(3x^3y^5)(8x^5y^3)$
 $(24x^3y^5)(8x^5y^3)$

Negative Exponents - $x^{-n} = \frac{1}{x^n}$ reciprocal

Zero as an Exponent -
$$x^0 = 1$$
 for $x \neq 0$

Rational Exponents - $x^{1/n} = \sqrt[n]{x}$

Examples: Rewrite in radical form

1.
$$g^{\frac{4}{9}} = g^{\frac{4}{9}} = \sqrt{g^{\frac{4}{9}}}$$

$$2. m^{7/10} = 10 m^{7/10}$$

Examples: Simplify

1.
$$(9a^6b^{10})^0 =$$

2.
$$\left(\frac{3h^4}{2p^7}\right)^{-2} = \left(\frac{3h^{4}}{2p^{7}}\right)^{-2} = \left(\frac{2p^{7}}{3h^{4}}\right)^{-2} = \frac{2^{7}\binom{7}{p^{7}}}{3h^{4}} = \frac{2^{7}\binom{7}{p^{7}}}{3^{7}\binom{7}{h^{7}}} = \left(\frac{1}{2}\frac{1}{p^{4}}\right)^{-2}$$