Rules for Exponents - Intermediate Algebra

We use exponents as a short-hand notation for repeated multiplication. They allow us to write $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=\underline{2}^{7}$ which is a much more compact form. Every exponential expression has two parts: the base, which is the number repeatedly multiplied, and the exponent, which tells you how many times to multiply.

Product Rule - $x^{m} x^{n}=x^{m+n}$ When multiplying exponential expressions that have the same base, add the exponents.

$$
x^{2} \cdot x^{3}=(x x)(x x x)=x^{1}
$$

Quotient Rule $-\frac{x^{m}}{x^{n}}=x^{m-n}$ When dividing exponential expressions that have the same base, subtract exponents.

$$
\frac{x^{7}}{x^{\prime \prime}}=\frac{x x \cdot(x+x x)}{(x+x+x)}=x^{3}
$$

Power Rule - $\left(x^{m}\right)^{n}=x^{m n}$ When raising an exponential expression to another power, multiply the exponents.

$$
\left(x^{2}\right)^{3}=x^{2} \cdot x^{2} \cdot x^{2}=x^{6}
$$

Examples: Simplify.

1. $\left(4 w^{6} x^{2}\right)\left(8 \underline{w} x^{9}\right)=32 \omega^{711} x^{\prime \prime}$
ω^{6}
2. $\frac{40 t^{11} w^{14}}{5 t^{3} w^{9}} \Rightarrow \frac{40}{5} \frac{t^{11}}{t^{3}} \frac{\omega^{14}}{\omega^{9}}=8 t^{11-3} \omega^{14-9}=8 t^{8} \omega^{5}$
3. $\frac{24 b^{18} c^{4}}{14 b^{10} c^{3}}$

$$
\begin{aligned}
& \frac{24}{14} \frac{b^{18}}{b^{10}} \frac{c^{4}}{c^{5}} \\
& \frac{12}{7} b^{8} c^{1}
\end{aligned}
$$

Powers of Products and Quotients - In raising an expression to a power, that power can be applied over multiplication and division. $\quad(x y)^{m}=x^{m} y^{m} \quad$ and $\quad\left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}}$

Examples: Simplify.

1. $\left(3 x^{5} y^{2} z\right)^{3}$

2. $\left(\frac{4 m p^{8}}{5 m^{3} p^{5}}\right)^{2}=\frac{4^{2} m^{2}\left(p^{8}\right)^{2}}{5^{2}\left(m^{3}\right)^{2}\left(p^{5}\right)^{2}}$

$$
\frac{m^{2}}{m^{4}}=m^{2-6}=m^{-4}=\frac{1}{m^{4}}
$$

3. $\left(3 x^{2} y^{5}\right)\left(2 x^{3} y\right)^{3}$

Negative Exponents - $x^{-n}=\frac{1}{x^{n}}$ reciprocal Zero as an Exponent - $x^{0}=1$ for $x \neq 0$

Rational Exponents - $x^{1 / n}=\sqrt[n]{x}$

Examples: Rewrite in radical form

1. $g^{\frac{4}{9}}=g^{4 / 9}=\sqrt[9]{g^{4}}$

Examples: Simplify

1. $\left(9 a^{6} b^{10}\right)^{0}=$

