Combining Functions - Intermediate Algebra

Definition - A constant, a variable or the product of any number of constants and variables is called a term. Terms can include constants and/or variables raised to exponents.

$$
3, x, 3 x^{2} y^{3},-7 x y z^{2}
$$

Definition - The constant part of any term is called the coefficient. The coefficient is usually at the front of any term and includes the sign of the term.

Examples: \quad The 3 in $3 x$, the -7 in $-7 x^{2} y^{3} z$.

Definition - Any combination of terms that are added together is called a polynomial. The powers of all variables in a polynomial must be positive integers.

Definition - The sum of all the exponents of the variables in the term is called the degree of a term.

$$
-7 x^{2} y z^{y} \quad 2+1+11=7 \text { is Segre }
$$

Definition - The degree of the highest term is the degree of the polynomial.

Definition - Like terms are terms that have the same variables with the same exponents

Combining Functions in Applications Using Addition or Subtraction

- The inputs for both functions must be measured in the same units.
- The outputs must be measured in the same units.

Combining Functions in Applications Using Multiplication or Division

- The inputs for both functions must be the same.
- The outputs must make sense together when combined.

Example: Use the following functions to write a new function that will give you the result requested.
$F(t)=$ Number of people employed at Ford Motor Company in year t
$I(t)=$ Average cost, in dollars per employee, for health insurance at Ford Motor Company in year t .
$\mathrm{V}(\mathrm{t})=$ Total cost, in dollars, for vacations taken by Ford Motor Company nonmanagement employees in year t.
$M(t)=$ Number of employees of Ford Motor Company who are in management in year t.
a) The total amount spent on health insurance for Ford Motor Company employees in year t.

$$
I(t) \cdot F(t)
$$

b) The number of non-management employees at Ford Motor Company in year t .

$$
F(t)-m(t)
$$

c) The average cost per non-management employee for vacations at Ford Motor Company in year t.

$$
\underset{\text { Hence }}{\substack{\text { tan }}} \frac{V(t)}{F(t)-m(t)}
$$

Examples: Combine the following functions. $f(x)=5 x+6, g(x)=2 x-9, h(x)=3 x+4$

$$
\text { 1. } \begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
& =5 x+6+2 x-9 \\
(f+g)(x) & =7 x-3
\end{aligned}
$$

2. $(g-f)(x)=g(x)-f(x)$

$$
\begin{aligned}
& =2 x-9-(5 x+6) \\
& =2 x-9-5 x-6
\end{aligned}
$$

3. $(h-g)(x)=h(x)-g(x)$

$$
\begin{aligned}
& =3 x+4-(2 x-9) \\
& =3 x+4-2 x+9
\end{aligned}
$$

Examples: Given $f(x)=3 x+8$ and $g(x)=4 x-10$, find

$$
\text { 1. } \left.\begin{array}{rl}
(f g)(x) & =f(x) \cdot g(x) \\
& =(3 x+18)(4 x-10) \\
& =3 x(4 x)+3 x(-10)+8(4 x) \\
& +8(-10) \\
& =12 x^{2}-30 x+32 x-80 \\
\left(f_{g}\right)(x) & =12 x^{2}+2 x-8
\end{array}\right\} \begin{aligned}
& \text { 2. }\left(\frac{f}{g}\right) \\
& \left(\frac{f}{g}\right)
\end{aligned}
$$

Examples: Perform the indicated operations and simplify.

$$
\text { 1. } \begin{aligned}
\left(3 m^{3} n^{2}+5 m^{2} n-4\right)+\left(4 m^{3} n^{2}-2 m n-6\right) \\
7 m^{3} n^{2}+5 m^{2} n-2 m n-10
\end{aligned}
$$

2. $\left(8 x^{3}+7 x^{2}-6 x\right)+\left(3 x^{2}+4 x+7\right)$

$$
\begin{gathered}
8 x^{3}+7 x^{2}-6 x-3 x^{2}-4 x+7 \\
8 x^{3}+4 x^{2}-10 x+7
\end{gathered}
$$

3. $(3 a+7)(4 a-5)$

$$
\begin{aligned}
& 3 a(1 a)^{2}+3 a(-5)+7(4 a)+7(-5) \\
& 12 a^{2}-15 a+28 a-35 \rightarrow 12 a^{2}+13 a-35
\end{aligned}
$$

4. $(5 m+2)\left(m^{2}+4 m-4\right)$

$$
\begin{aligned}
& 5 m\left(m^{2}\right)+5 m(4 m)+5 m(-4)+2\left(m^{2}\right)+2(4 m)+2(-4) \\
& 5 m^{3}+20 m^{2}-20 m+2 m^{2}+8 m-8 \\
& 5 m^{3}+22 m^{2}-12 m-8
\end{aligned}
$$

