Radicals

If a is any non-negative real number, then its square root is the non-negative number whose square is a. For example, the square root of 9 is 3 because $3^{2}=9$. We write the square root of n as \sqrt{n}. (The word root is used interchangeably with the word radical.)

It is important to remember that \sqrt{n} is never negative. Therefore $\sqrt{16}$ is 4 and not -4 even though $(-4)^{2}=16$. If we want to talk about the negative square root of 16 we use the notation $-\sqrt{16}=-4$. If we want both square roots at the same time we use $\pm \sqrt{16}= \pm 4$.

The square root is not the only root possible, it is just the most frequently used root. The cube root of a real number a is the number whose cube is a. The cube root of a is written as $\sqrt[3]{a}$. For example, the cube root of $27(\sqrt[3]{27})$ is 3 because $3^{3}=27$. Notice that even though we could only take the square root of a non-negative number, we can take the cube root of any positive number, zero, or negative number. The cube root of a number is always the same sign as the number itself.

Higher roots are defined similarly. The fourth root of a non-negative number a is defined as the non-negative number whose fourth power is a, and written $\sqrt[4]{a}$. The general nth root of any number is $\sqrt[n]{a}$.

NOTE: We cannot take an even-numbered root of a negative number, but we can take an oddnumbered root of any number. Even roots are always positive, whereas odd roots have the same sign as the number we start with.

Radical Rules

If a and b are any real numbers (non-negative in the case of even-numbered roots), then

$$
\begin{aligned}
& \sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b} \\
& \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}
\end{aligned}
$$

Notice that these rules are similar to the rules for exponents. There are no rules for $\sqrt[n]{a+b}$ or $\sqrt[n]{a-b}$.

Practice Problems: Completely simplify each radical.

1. $\sqrt{4}$
2. $-\sqrt{49}$
3. $\sqrt{\frac{25}{16}}$
4. $\sqrt{8}$
5. $\sqrt{75}$
6. $-\sqrt{\frac{27}{4}}$
7. $\sqrt[3]{54}$
8. $\sqrt[3]{-27 x^{6} y^{9}}$
9. $\sqrt{\frac{2}{5}}$
10. $-\sqrt{\frac{1}{3}}$
11. $\sqrt[4]{16 x^{7} y^{10} z^{12}}$
12. $\sqrt[3]{-64 x^{5} y^{7}}$

Solutions

1. 2
2. -7
3. $\frac{5}{4}$
4. $\sqrt{8}=\sqrt{4 \cdot 2}=\sqrt{4} \sqrt{2}=2 \sqrt{2}$
5. $5 \sqrt{3}$
6. $-\frac{3 \sqrt{3}}{2}$
7. $3 \sqrt[3]{2}$
8. $-3 x^{2} y^{3}$
9. $\frac{\sqrt{10}}{5}$
10. $-\frac{\sqrt{3}}{3}$
11. $2 x y^{2} z^{3} \sqrt[4]{x^{3} y^{2}}$
12. $-4 x y^{2} \sqrt[3]{x^{2} y}$
