2.2 Exponential Functions and Models

The Laws of Exponents – If b and c are positive and x and y are any real numbers, then the following laws hold:

1. $b^{x}b^{y} = b^{x+y}$ When you multiply two things with the same base you add their exponents.

2. $\frac{b^x}{b^y} = b^{x-y}$ When you divide two things with the same base you subtract their exponents.

3.
$$\frac{1}{b^x} = b^{-x}$$
 and $\frac{1}{b^{-x}} = b^x$ 4. $b^0 = 1$

5. $(b^x)^y = b^{xy}$ When you raise a power to a power, you multiply.

6.
$$(bc)^x = b^x c^x$$

7. $\left(\frac{b}{c}\right)^x = \frac{b^x}{c^x}$

Definition – An exponential function has the form $f(x) = A(b)^x$ where A and b are constants with $A \neq 0$ and b > 0 with $b \neq 1$.

Role of A: f(0) = A, so A is the y-intercept of the graph of f

Role of *b*: If *x* increases by 1, f(x) is multiplied by *b*.

Examples: Create a table of values.

1.
$$f(x) = 3(2)^{x}$$

2. $g(x) = -2\left(\frac{1}{3}\right)^{x}$

$$\frac{X}{Y}$$

$$-2 \quad 3(2)^{-2} = 3(\frac{1}{4}) = \frac{3}{4}$$

$$X 2$$

$$-1 \quad 3(2)^{-1} = 3(\frac{1}{2}) = \frac{3}{2}$$

$$X 2$$

$$0 \quad 3(2)^{0} = 3(1) = 3$$

$$X 2$$

$$1 \quad 3(2)^{1} = 3(2) = 6$$

$$X 2$$

$$2 \quad 3(2)^{2} = 3(4) = 12$$
base = 2, nexty is X2

$$g(x) = -2\left(\frac{1}{3}\right)^{2}$$

x	<u>-2</u>	<u>-1</u>	<u>0</u>	<u>1</u>	<u>2</u>
f(x)	0.5	1.5	4.5	13.5	40.5
g(x)	8	4	2	1	1/2
h(x)	100	200	400	600	800
j(x)	0.3	0.9	2.7	8.1	24.3

Example: The values of several functions are given in a table. Decide which are exponential and then find their equation.

This will be discussed in class.

2. (2, -4) and (4, -16)

Examples: Find equations for exponential functions of the form $y = A(b)^x$ that pass through the given points. Round all coefficients to 4 decimal places, if necessary.

1.
$$(2, 36)$$
 and $(4, 324)$
36 = $A(b)^2$
324 = $A(b)^4$
 $\frac{36}{9} = A$
 $4 = A$
 $\frac{36}{3^2} = A$
 $\frac{324}{5^2} = \frac{36}{5^2}(b^4)$
 $\frac{324}{5^2} = \frac{36}{5^2}(b^$

$$\frac{-4 = A(b)^{2}}{-16 = A(b)^{4}}$$

$$(1) -\frac{4}{b^{2}} = A \qquad (2) = -\frac{4}{b^{2}}(b^{4})$$

$$(3) -\frac{4}{4} = A \qquad (-16 = -\frac{4b^{4}}{b^{2}})$$

$$-16 = -\frac{4b^{4}}{b^{2}}$$

$$-16 = -\frac{4b^{4}}{b^{2}}$$

$$-16 = -\frac{4b^{2}}{b^{2}}$$

3. You try it:
$$(1,3)$$
 and $(3,6)$

Definition – The number *e* is the limiting value of the quantities $\left(1+\frac{1}{m}\right)^m$ as *m* gets larger and larger and has the value of $e \approx 2.71828182845904523536...$ If *\$P* is invested at an annual interest rate *r* compounded continuously, the accumulated amount after *t* years is $A(t) = Pe^{rt}$.

Example: Rock Solid Bank & Trust is offering a CD that pays 4% compounded continuously. How much interest would a \$1,000 deposit earn over 10 years?

$$\rho = 1000, \quad r = 4\% = 0.04, \quad t = 10$$

$$A = 1000e^{(0.04 \cdot 10)} = 1491.82$$

$$T = A - P = 1491.82 - 1000 = \frac{3}{4}91.82$$