2.2 Exponential Functions and Models

The Laws of Exponents - If b and c are positive and x and y are any real numbers, then the following laws hold:

1. $b^{x} b^{y}=b^{x+y}$ When you multiply two things with the same base you add their exponents.
2. $\frac{b^{x}}{b^{y}}=b^{x-y}$ When you divide two things with the same base you subtract their exponents.
3. $\frac{1}{b^{x}}=b^{-x}$ and $\frac{1}{b^{-x}}=b^{x}$
4. $b^{0}=1$
5. $\left(b^{x}\right)^{y}=b^{x y}$ When you raise a power to a power, you multiply.
6. $(b c)^{x}=b^{x} c^{x}$
7. $\left(\frac{b}{c}\right)^{x}=\frac{b^{x}}{c^{x}}$

Definition - An exponential function has the form $f(x)=A(b)^{x}$ where A and b are constants with $A \neq 0$ and $b>0$ with $b \neq 1$.

Role of $A: f(0)=A$, so A is the y-intercept of the graph of f

Role of b : If x increases by $1, f(x)$ is multiplied by b.
Examples: Create a table of values.

1. $f(x)=3(2)^{x}$
2. $g(x)=-2\left(\frac{1}{3}\right)^{x}$

base $=2$, next y is $\times 2$

$$
\begin{array}{l|l}
x & y \\
\hline-2 & -2\left(\frac{1}{3}\right)^{-2}=-2(9)=-18 \\
-1 & -2\left(\frac{1}{3}\right)^{-1}=-2(3)=-6 \\
0 & -2\left(\frac{1}{3}\right)^{0}=-2(1)=-2 \\
1 & \left.-2\left(\frac{1}{3}\right)^{1}=-2\left(\frac{1}{3}\right)=-\frac{2}{3}\right\rangle \times \frac{1}{3} \\
2 & -2\left(\frac{1}{3}\right)^{2}=-2\left(\frac{1}{9}\right)=-\frac{2}{9} \\
\text { base }=\frac{1}{3}, \text { next y is } \times \frac{1}{3}
\end{array}
$$

Example: The values of several functions are given in a table. Decide which are exponential and then find their equation.

x	$\mathbf{- 2}$	$\mathbf{- \mathbf { 1 }}$	$\underline{\mathbf{0}}$	$\mathbf{\mathbf { 1 }}$	$\underline{\mathbf{2}}$
$f(x)$	0.5	1.5	4.5	13.5	40.5
$g(x)$	8	4	2	1	$1 / 2$
$h(x)$	100	200	400	600	800
$j(x)$	0.3	0.9	2.7	8.1	24.3

This will be discussed in class.

Examples: Find equations for exponential functions of the form $y=A(b)^{x}$ that pass through the given points. Round all coefficients to 4 decimal places, if necessary.

1. $(2,36)$ and $(4,324)$

$$
\begin{aligned}
& \quad \begin{array}{c|c}
36=A(b)^{2} & 324=A(b)^{4} \\
\frac{36}{9}=A \\
4=A
\end{array} \quad \begin{array}{c}
\frac{36}{b^{2}}=A \\
\frac{36}{3^{2}}=A
\end{array} \\
& \hline 324=\frac{36}{b^{2}}\left(b^{4}\right) \\
& 324=\frac{36 b^{4}}{b^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda \frac{324}{36}=\frac{36 b^{2}}{36} \\
& 9=b^{2} \\
& \pm 3=b \\
& \text { b must be positive } b=3
\end{aligned}
$$

2. $(2,-4)$ and $(4,-16)$
3. You try it: $(1,3)$ and $(3,6)$

Definition - The number e is the limiting value of the quantities $\left(1+\frac{1}{m}\right)^{m}$ as m gets larger and larger and has the value of $e \approx 2.71828182845904523536 \ldots$ If $\$ P$ is invested at an annual interest rate r compounded continuously, the accumulated amount after t years is $A(t)=P e^{r t}$.

Example: Rock Solid Bank \& Trust is offering a CD that pays 4% compounded continuously. How much interest would a $\$ 1,000$ deposit earn over 10 years?

$$
\begin{aligned}
& P=1000, \quad r=4 \%=0.04, t=10 \\
& A=1000 e^{(0.04 \cdot 10)}=1491.82 \\
& I=A-P=1491.82-1000=491.82
\end{aligned}
$$

