2.3 Logarithmic Functions and Models

Definition - The base b logarithm of $x, \log _{b} x$, is the power to which we need to raise b in order to get x. Symbolically, $\log _{b} x=y$ means $b^{y}=x$.

We have two logarithmic bases that are used most frequently and they are the common log, base 10 , and the natural log, base e. These two are so widely used that they have their own special notations:
$\log _{10} x=\log x$ and $\log _{e} x=\ln x$.
Examples: Rewrite in the opposite form.

1. $9=3^{2} \quad 2$ is the power to which I raise 3 to get 9

$$
2=\log _{3}(9)
$$

2. $\frac{1}{125}=5^{-3}$

$$
-3=\log _{5}\left(\frac{1}{125}\right)
$$

3. You try it: $2401=7^{4}$
4. $\log _{2}(8)=3$

$$
\begin{aligned}
& B \text { cos of } \log \text { is } 2 \text {, base of exponential is } 2 \\
& \log \text { equals } 3, \log \text { is exponent: } 2^{3}=8
\end{aligned}
$$

5. $\log 10,000=4$

$$
\begin{aligned}
& \text { No Base written, must be } b=10 \\
& 10^{4}=10,000
\end{aligned}
$$

6. You try it: $\ln 7=x$

Because these two are so commonly used, they are on our calculators. It is impossible for a calculator to have a shortcut button for every logarithmic base so we have a change of base formula that allows us to enter any base on the calculator.

Change of Base Formula:

$$
\log _{b} a=\frac{\log a}{\log b}=\frac{\ln a}{\ln b}
$$

Examples: Use logarithms to solve.

1. $4^{x}=3$
(1) rewrite

$$
x=\log _{4}(3)
$$

(2) Evaluate $x=\frac{\log 3}{\log _{4} 4} \approx 0.7925$
2. $6^{3 x+1}=30$
(1) Rewrite

$$
3 x+1=\log _{6}(30)
$$

(3) Evaluate:
(2) Solve:

$$
\begin{aligned}
3 x & =\log _{6}(30)-1 \\
x & =\frac{\log _{6}(30)-1}{3}
\end{aligned}
$$

$$
x=\frac{\frac{\log (30)}{\log (6)}-1}{3}=0.2994
$$

3. $5.3\left(10^{x}\right)=2$
(1) Isolate the exponential part

$$
10^{x}=\frac{2}{5.3}
$$

(3) Evaluate
(2) Rewrite

$$
x=-0.4232
$$

$$
x=\log \left(\frac{2}{5.3}\right)
$$

4. $4(1.5)^{2 x-1}=8$
(1) Isolate: $(1.5)^{2 x-1}=2$
(2) Rewrite: $\log _{1.5}(2)=2 x-1$
(3) Solve:

$$
\begin{aligned}
& \log _{1.5}(2)+1=2 x \\
& \frac{\log _{1.5}(2)+1}{2}=x
\end{aligned}
$$

(4) Evaluate:

$$
\begin{aligned}
& x=\frac{\frac{\log (2)}{\log (1.5)}+1}{2} \\
& x \approx 1.3548
\end{aligned}
$$

Definition - A logarithmic function has the form $f(x)=\log _{b} x+C$ or, alternatively, $f(x)=A \ln x+C$

Logarithmic Identities - The following identities hold for all positive bases $a \neq 1$ and $b \neq 1$, all positive numbers x and y, and for every real number r. The identities follow from the laws of exponents.

1. $\log _{b}(x y)=\log _{b} x+\log _{b} y$
2. $\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$
3. $\log _{b} x^{r}=r \log _{b} x$
4. $\log _{b} b=1 ; \log _{b} 1=0$
5. $\log _{b}\left(\frac{1}{x}\right)=-\log _{b} x$
6. $\log _{b} x=\frac{\log _{a} x}{\log _{a} b}$

Example: How long will it take a $\$ 500$ investment to be worth $\$ 700$ if it is continuously compounded at 10% per year?

$$
700=500 e^{.10 t}
$$

(1) Isolate
(2) Rewrite

It will take

$$
\begin{aligned}
\frac{700}{500} & =e^{.10 t} \\
\frac{7}{5} & =e^{.10 t}
\end{aligned}
$$

(3) Solve about 3.4 yrs.

Example: How long, to the nearest year, will it take an investment to triple if it is continuously compounded at 12% per year?

Assume $P=100$, then $A=300$

$$
\begin{aligned}
300 & =100 e^{.12 t} \\
3 & =e^{.12 t}
\end{aligned} \longrightarrow \begin{aligned}
.12 t & =\ln (3) \\
t & =\frac{\ln (3)}{.12} \approx 9.155
\end{aligned}
$$

It will take about 9 yrs to triple.

Definition - An exponential decay function has the form $Q(t)=Q_{0} e^{-k t} . Q_{0}$ represents the value of Q at time $t=0$, and k is the decay constant. The decay constant k and half-life t_{h} for Q are related by $k \cdot t_{h}=\ln 2$.

Definition - An exponential growth function has the form $Q(t)=Q_{0} e^{k t} . Q_{0}$ represents the value of Q at time $t=0$, and k is the growth constant. The growth constant k and doubling time t_{d} for Q are related by $k \cdot t_{d}=\ln 2$.

Examples: Find the associated exponential growth or decay function.

1. $Q=1000$ when $t=0$; half-life $=3$

$$
\begin{aligned}
Q_{0}=1000 & =3 \\
k(3) & =\ln 2 \\
k & =\frac{\ln (2)}{3}
\end{aligned} \quad Q(t)=1000 e^{\frac{\ln (2)}{3} t}
$$

2. $Q=2000$ when $t=0$; doubling time $=2$

$$
\begin{aligned}
Q_{0}=2000 & t_{d}=2 \\
k(2) & =\ln 2 \\
k & =\frac{\ln (2)}{2}
\end{aligned}
$$

Examples: Convert the given exponential function to the form indicated. Round all coefficients to four significant digits.

1. $f(x)=4 e^{2 x}$ to the form $f(x)=A(b)^{x}$

$$
\begin{aligned}
& A=4 \\
& b=e^{2} \approx 7.389 \quad f(x)=4(7.389)^{x}
\end{aligned}
$$

2. $f(t)=2.1(1.001)^{t}$ to the form $Q(t)=Q_{0} e^{k t}$

$$
Q_{D}=2.1
$$

$$
e^{k}=1.001
$$

$$
Q(t)=2.1 e^{0.0009995 t}
$$

$$
k=\ln (1.001) \approx 0.0009995
$$

3. You try it: $f(t)=10(0.987)^{t}$ to the form $Q(t)=Q_{0} e^{-k t}$

Example: Soon after taking an aspirin, a patient has absorbed 300 mg of the drug. If the amount of aspirin in the bloodstream decays exponentially, with half being removed every 2 hours, find, to the nearest 0.1 hours, the time it will take for the amount of aspirin in the bloodstream to decrease to 100 mg . - find t
absorbed $300 \mathrm{mg} \Rightarrow Q_{0}=300$
Decays exponentially $\rightarrow Q(t)=Q_{0} e^{K t}$

$$
\begin{aligned}
& \text { half removed (half-life) } 2 \text { hours } \quad t_{h}=2 \\
& k=\frac{\ln (2)}{2} \approx 0.3466
\end{aligned}
$$

$$
\begin{aligned}
& \text { Equation: } Q(t)=300 e^{-0.3466 t}<\text { how do I } \\
& \text { negative? } \\
& 100=300 e^{-0.3466 t} \\
& \frac{1}{3}=e^{-0.3466 t} \quad-0.3466 t=\ln (1 / 3) \\
& t=\frac{\ln (1 / 3)}{-0.3466} \approx 3.17
\end{aligned}
$$

Example: After a large number of drinks, a person has a BAC of $200 \mathrm{mg} / \mathrm{dL}$. If the amount of alcohol in the blood decays exponentially, with one fourth being removed every hour, find the time it will take for the person's BAC to decrease to $80 \mathrm{mg} / \mathrm{dL}$

Decays exponentially $\Rightarrow Q(t)=Q_{0} e^{-k t}$

$$
\text { Initial }=Q_{0}=200
$$

$\frac{1}{4}$ removed is not a half life but it will give us some information. $\frac{1}{4}$ of 200 is 50 mg ld removed in first hour. This gives a point $(1,150)$ that can be used to find K.

$$
\begin{aligned}
& 150=200 e^{-k(1)} \\
& \frac{150}{200}=e^{-k} \\
& -k=\operatorname{Ln}\left(\frac{150}{200}\right)
\end{aligned}
$$

$-K \approx-0.2877$ we can now use this in our model as - k to find t when $Q=80$.

$$
\begin{aligned}
80 & =200 e^{-0.2877 t} \\
\frac{80}{200} & =e^{-0.2877 t} \\
-0.2877 t & =\operatorname{Ln}\left(\frac{80}{200}\right) \\
t & =\frac{\operatorname{Ln}(80 / 200)}{-0.2877} \approx 3.18 \text { or approximately } 3.2 \text { hours. }
\end{aligned}
$$

* Note: At $80 \mathrm{mg} / \mathrm{dl}$ you can be arrested for drunk driving.

