3.2 Compound Interest

Definition - The future value of an investment of PV dollars earning interest at an annual rate of r compounded (reinvested) m times per year for a period of t years is $F V=P V(1+i)^{n}$, where $i=r / m$ and $n=m t$.

Example: Calculate the FV of an investment of the given amount at the stated interest rate after the stated amount of time. Determine by how much each investment has grown.

$$
\begin{array}{rlr}
\text { 1. } \$ 8000, \text { at } 4 \% \text { per year, compounded semi-annually, for } 8 \text { years. } & i=\frac{.04}{2}=.02 \\
F V=8000(1+.02)^{16} & n=2(8)=16 \\
F V=\$ 10,982.29 & \text { Grew by } \$ 2982.29 &
\end{array}
$$

2 . $\$ 16,000$, at 2.5% per year, compounded quarterly, for 5 years.

$$
\begin{aligned}
& F V=16,000(1+0.00625)^{20} \\
& F V=18,123,32 \quad \text { Grew by }
\end{aligned}
$$

$$
i=\frac{.025}{4}=0.00625
$$

$$
n=4(5)=20
$$

3. You try it: $\$ 50,000$, at 1.5% per year, compounded weekly, for 5 years.

Example: Calculate the PV of an investment that will be worth the given amount at the stated interest rate after the stated amount of time.

1. $\$ 7000$, after 10 years, at 5% per year compounded monthly

$$
\begin{aligned}
& 7000=\operatorname{PV}\left(1+\frac{.05}{12}\right)^{120} \\
& P V=\frac{7000}{\left(1+\frac{.05}{12}\right)^{110}}=\$ 4250.13
\end{aligned}
$$

$$
\begin{aligned}
& i=\frac{.05}{12} \\
& n=12(10)=120
\end{aligned}
$$

2. $\$ 12,500$, after 5 years, at 7% per year compounded daily

$$
P V=\frac{12.500}{\left(1+\frac{.07}{365}\right)^{1825}}=\$ 8808.90
$$

$$
\begin{aligned}
& i=\frac{.07}{365} \\
& n=365(5)=1825
\end{aligned}
$$

Definition - The effective annual interest rate $r_{\text {eff }}$ of an investment paying a nominal interest rate of $r_{\text {nom }}$ compounded m times per year is $r_{e f f}=\left(1+\frac{r_{n o m}}{m}\right)^{m}$. . To compare rates of investments with different compounding periods, always compare the effective interest rates rather than the nominal rates.

Examples: Find the effective annual interest rate.

1. 5% compounded quarterly

$$
\begin{aligned}
r_{e f f}=\left(1+\frac{.05}{4}\right)^{4}-1 & =0.050945 \\
r_{e f f} & =5.1 q_{0}
\end{aligned}
$$

2. 5\% compounded monthly

$$
\begin{aligned}
& r_{e f f}=\left(1+\frac{.05}{12}\right)^{12}-1=0.05116 \\
& r_{e f f}=5.19
\end{aligned}
$$

3. You try it: 9\% compounded monthly
