3.2 Compound Interest

Definition – The future value of an investment of PV dollars earning interest at an annual rate of r

compounded (reinvested) *m* times per year for a period of *t* years is $FV = PV(1+i)^n$, where i = r/m and n = mt.

Example: Calculate the FV of an investment of the given amount at the stated interest rate after the stated amount of time. Determine by how much each investment has grown.

1. \$8000, at 4% per year, compounded semi-annually, for 8 years. F = 8000(1 + .02) $FV = \frac{16}{10982.29}$ Grew by \$2982.29h = 2(8) = 16

2. \$16,000, at 2.5% per year, compounded quarterly, for 5 years. FV = 16,000(1 + 0.00615) $FV = \frac{20}{4} = 0.00625$ $fV = \frac{18}{123,32}$ $Grew by = \frac{20}{4} = 20$

3. You try it: \$50,000, at 1.5% per year, compounded weekly, for 5 years.

Example: Calculate the PV of an investment that will be worth the given amount at the stated interest rate after the stated amount of time.

1. \$7000, after 10 years, at 5% per year compounded monthly $\int \Delta D b = P V \left(1 + \frac{0.05}{12} \right)^{120}$ $P V = \frac{1000}{\left(1 + \frac{0.05}{12}\right)^{120}} = \frac{120}{120}$

2. \$12,500, after 5 years, at 7% per year compounded daily

$$PV = \frac{12,500}{\left(1 + \frac{01}{365}\right)^{1825}} = \frac{4}{8808.90}$$

 $L = \frac{.07}{345}$

$$n = 365(5) = 1825$$

Definition – The effective annual interest rate r_{eff} of an investment paying a nominal interest rate of r_{nom} compounded *m* times per year is $r_{eff} = \left(1 + \frac{r_{nom}}{m}\right)^m - 1$. To compare rates of investments with different compounding periods, always compare the effective interest rates rather than the nominal rates.

Examples: Find the effective annual interest rate.

1.5% compounded quarterly

$$\Gamma_{eff} = \left(1 + \frac{.65}{4}\right)^4 - 1 = 0.050945$$

 $\Gamma_{eff} = 5.19$

2.5% compounded monthly

$$r_{eff} = \left(1 + \frac{.05}{12}\right)^{12} - 1 = 0.05116$$

r_eff = 5.1%

3. You try it: 9% compounded monthly