7.2 Cardinality

Definition: If A is a finite set, then its cardinality is $n(A)=$ number of elements in A.

Union Rule of Counting: If A and B are finite sets, then $n(A \cup B)=n(A)+n(B)-n(A \cap B)$.

Definition: If S is a finite universal set and A is a subset of S , then $n\left(A^{\prime}\right)=n(S)-n(A)$ and $n(A)=n(S)-n\left(A^{\prime}\right)$.

Definition: If An and B are finite sets, then $n(A \times B)=n(A) n(B)$.

Examples: Let $A=\{$ Dirk, John, Frans, Sarie $\}, B=\{$ Francs, Sarie, Tina, Klans, Henrik $\}$, and $C=\{$ Hans, Francs\} . ~ F i n d ~ t h e ~ n u m b e r s ~ i n d i c a t e d . ~

1. $n(A)+n(B)=4+5=9$
elements in A
5 elements in B
2. $n(A \cup B)=7$

$$
A \cup B=\{\text { Dirk, Johan, Frank, Sarie, Tina, Klaus, Henrika\} ~ }
$$

3. $n(A \cup(B \cap C))=4$

$$
\begin{aligned}
& B \cap C=\left\{F r a_{n s}\right\} \\
& A \cup(B \cap C)=\{D i r k, \text { Johan, Frans, Saris }\}
\end{aligned}
$$

Example: Let $C=\{$ Head, Tail $\}, D=\{1,2,3,4,5,6\}$, and $P=\{$ red, yellow, blue $\}$. Find the numbers indicated.

1. $n(C \times C)=2 \times 2=4$
2. $n(D \times D)=6 \times 6=36$
3. $n(C \times P)=2 \times 3=6$
4. $n(C \times D \times P)=2 \times 6 \times 3=36$

This allows us to know when we have found all the elements of the set.

