7.4 Permutations and Combinations

Definition: A permutation of n items is an ordered list of those items. The number of possible permutations of n items is given by n factorial, which is $n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1$. That is, n ! is n multiplied by every number lower than it. Note that the factorial is only defined for positive integers with $0!=1$.

Definition: A permutation of n items taken r at a time is an ordered list of r items chosen from a set of n items. The number of permutations of n item taken r at a time is given by $P(n, r)=\frac{n!}{(n-r)!}$.

Example: The number of permutations of 6 items taken three at a time is $6 \times 5 \times 4=120$.

Fact: Permutations require order. Think of placing in a race: order matters. When 6 people start the race, all 6 have the possibility of coming in first place. After that first person crosses the line, only 5 people remain that could come in second place. After the first two cross the line, only 4 people remain that could cross the line in third place.

When order does not matter we use combinations.

Definition: The number of combinations of n items taken r at a time is given by $C(n, r)=\frac{n!}{r!(n-r)!}$.

The r ! in the denominator eliminates any repeated combinations. That is, for permutations $\{a, b, c\}$ is different than $\{b, a, c\}$ or even $\{c, b, a)$. However, for combinations they are all the same.

Examples: Evaluate

1. $\frac{10!}{8!}=\frac{10.9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=10 \cdot 9=90$
2. $P(8,3)=\frac{8!}{(8-3)!}=\frac{8!}{5!}=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=8 \cdot 7 \cdot 6=336$
3. $C(11,9)=\frac{11!}{9!(11-9)!}=\frac{11!}{9!2!}=\frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 2 \cdot 1}=\frac{11 \cdot 10}{2 \cdot 1}=55$
4. $P(11,9)=\frac{11!}{(11-9)!}=\frac{11!}{2!}=11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4-3=19,958,400$
5. $C(10,1)=\frac{10!}{1!(10-1)!}=\frac{10!}{1!9!}=10$

Example: How many three letter sequences use the letters of b, o, g, e, y at most once each?

\[

\]

Example: How many three letter sets use the letters of b, o, g, e, y at most once?

$$
\begin{gathered}
\text { Combination } \\
\underset{\text { have }}{C(5,3)}=10 \\
r_{\text {want }}
\end{gathered}
$$

Example: A bag contains three red marbles, two green ones, one lavender one, two yellows and two orange marbles.

1. How many possible sets of four marbles are there?

$$
C(10,4)=\frac{10!}{4!6!}=\frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1}=210
$$

2. How many sets of four marbles include all the red ones?
"have" must total 10, "want" must total 4
3. How many sets of four marbles include none of the red ones?

$$
\underset{\sim}{C}(3,0) \cdot C(7,4)=\frac{3!}{0!3!} \cdot \frac{7!}{4!3!}=\frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1}=35
$$

$$
\begin{array}{cc}
\text { have } & \text { want } \\
3 \text { red } & \text { no } \\
& \text { red }
\end{array}
$$

4. How many sets of four marbles include one of each color other than lavender?

$$
\begin{aligned}
& C(3,1) \cdot C(2,1) \cdot C(1,0) \cdot C(2,1) \cdot C(2,1) \\
= & 3 \cdot 2 \cdot 1 \cdot 2 \cdot 2 \\
= & 24
\end{aligned}
$$

