8.4 Probability and Counting Techniques

Examples: Suzy sees a bag containing 4 red marbles, 3 green marbles, 2 white marbles, and 1 purple marble. She grabs 5 of them. Find the probabilities of the following events, expressing each as a fraction in lowest terms.

10 marbles, grab $5 \quad n(5)=C(10,5)=252$

1. She has all the red ones.

$$
C(4,4) \cdot C(6,1)=1.6=6 \quad P(\text { all red })=\frac{6}{252}=\frac{1}{42}
$$

2. She has none of the red ones.

$$
C(4,0) \cdot C(6,5)=1 \cdot 6=6 \quad P(\text { no } \operatorname{red})=\frac{6}{252}=\frac{1}{42}
$$

3. She has at least 1 white one.
at least 1 is loo 2

$$
\begin{aligned}
& C(2,1) \cdot C(8,4)+C(2,2) \cdot C(8,3) \\
& 2 \cdot 70+1 \cdot 56=140+56=196
\end{aligned}
$$

$$
P(\text { at least } 1 \text { white })=\frac{196}{252}=\frac{7}{9}
$$

4. She has 2 reds and 1 of each other color.

$$
\begin{aligned}
& C(4,2) \cdot C(3,1) \cdot C(2,1) \cdot C(1,1)=6 \cdot 3 \cdot 2 \cdot 1=36 \\
& P(\text { this })=\frac{36}{252}=\frac{1}{7}
\end{aligned}
$$

5. She has at most 1 green one.

0 or 1 green

$$
\begin{aligned}
& C(3,0) \cdot C(7,5)+C(3,1) \cdot C(7,4) \\
= & 1 \cdot 21+3 \cdot 35=21+105=126
\end{aligned}
$$

$$
P(\text { at most } 1 \text { green })=\frac{126}{252}=\frac{1}{2}
$$

Examples: Poker is a game that consists of dealing 5 cards at random from a standard deck of 52. Find the probability of each hand.

$$
n(5)=C(52,5)=2,5989,60
$$

13 denominations (values)
4 suits

1. Two of a kind: 2 cards with the same denomination and 3 cards with other denominations (different from each other and different from the pair).

$$
\begin{aligned}
& C(13,1) \cdot C(4 \cdot 2) \cdot C(12,3) \cdot C(4,1) C(4,1) C(4,1) \\
= & 13 \cdot 6 \cdot 220 \cdot 4 \cdot 4 \cdot 4=1098240 \quad \frac{1098240}{2598960} \approx 0.4226
\end{aligned}
$$

2. Three of a kind: 3 cards of the same denomination and 2 cards with other denominations.

$$
\begin{aligned}
& C(13,1) \cdot C(4,3) \cdot C(12,2) \cdot C(4,1) C(4,1) P(3 \text { of kind })
\end{aligned}=\frac{54192}{2598960}=13 \cdot 4 \cdot 66 \cdot 4 \cdot 4=54912 \quad=0.02118
$$

3. Two pair: 2 cards with one denomination, 2 cards with another, and 1 with a third.

$$
\begin{aligned}
& C(13,1) \cdot C(4,2) \cdot C(12,1) \cdot C(4,2) \cdot C(11,1) \cdot C(4,1) \\
= & 13 \cdot 6 \cdot 12 \cdot 6 \cdot 11 \cdot 4=247,104 \\
P(2 \text { pair })= & \frac{247,104}{2598960}=0.0951
\end{aligned}
$$

None of these make it worth wagering big money... unless you have it to lose.

Example: A test has three parts. Part A consists of eight true-false questions, Part B consists of five multiple choice questions with five choices each, and Part C requires you to match five questions with five different answers one-to-one. Assuming that you make random guesses in filling out your answer sheet, what is the probability that you will earn 100% on the test?
you must do all three ports

$$
\begin{aligned}
& 2^{8} \cdot 5^{5} \cdot 5!=256 \cdot 3125 \cdot 120=96,000,000 \\
& P(100 \%)=\frac{11}{96 \text { million } \quad \text { (study to improve odds) }}
\end{aligned}
$$

Example: The Random Example Lottery requires you to select a sequence of three different numbers from 0 through 49. (Order is important.) You are a Winner if your sequence agrees with that in the drawing, and you are a Booby Prize Winner if your selection of number is correct, but in the wrong order. What is the probability of being a Winner? What is the probability of being a Booby Prize Winner? \bar{W} at is the probability that you are either a Winner or a Booby Prize Winner?

Winner: $\quad P(50,3)=117,600$

$$
P(\text { winner })=\frac{1}{117,600} \approx 0.000008503
$$

Booby prize: $\quad C(50,3)=19,600$

$$
P(\text { B. prize })=\frac{1}{19,600} \approx 0.000051020
$$

Neither winner nor Booby prize winner is

$$
1-P(\text { win })-P(B, \text { prize })=1-\frac{1}{117,600}-\frac{1}{19,600} \approx 0.999940
$$

