Formulas for exam 2

Simple Interest: $I N T=P V r t$.
Future Value for Simple Interest: $F V=P V+I N T=P V+P V r t=P V(1+r t)$.
Present Value for Simple Interest: $P V=\frac{F V}{1+r t}$.

Future Value for Compound Interest

$$
F V=P V\left(1+\frac{r}{m}\right)^{m t} \quad \text { or } \quad F V=P V(1+i)^{n}
$$

where $i=r / m$ is the interest paid each compounding period and $n=m t$ is the total number of compounding periods.

Present Value for Compound Interest

$$
P V=\frac{F V}{\left(1+\frac{r}{m}\right)^{m t}} \quad \text { or } \quad P V=\frac{F V}{(1+i)^{n}}=F V(1+i)^{-n}
$$

Effective Interest Rate

$$
r_{\mathrm{eff}}=\left(1+\frac{r_{\mathrm{nom}}}{m}\right)^{m}-1
$$

Sinking Fund:

$$
F V=P M T \frac{(1+i)^{n}-1}{i}
$$

where $i=r / m$ is the interest paid each compounding period and $n=m t$ is the total number of compounding periods.

Payment Formula for a Sinking Fund

$$
P M T=F V \frac{i}{(1+i)^{n}-1}
$$

where $i=r / m$ is the interest paid each compounding period and $n=m t$ is the total number of compounding periods.

Present Value of an Annuity

$$
P V=P M T \frac{1-(1+i)^{-n}}{i}
$$

where $i=r / m$ is the interest paid each compounding period and $n=m t$ is the total number of compounding periods.
Payment Formula for an Ordinary Annuity

$$
P M T=P V \frac{i}{1-(1+i)^{-n}}
$$

where $i=r / m$ is the interest paid each compounding period and $n=m t$ is the total number of compounding periods.

