Equation of a linear function: $y=m x+b$ or $f(x)=m x+b$, where $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
Cost function: $C(x)=m x+b$, where m is the marginal cost and b is the fixed cost, and $m=\frac{C_{2}-C_{1}}{x_{2}-x_{1}}$.

Revenue: $R(x)=m x$, where m is the marginal revenue. Also, $R=$ (price) \times (quantity).
Profit: $P(x)=R(x)-C(x)$.
Supply and demand: Both have the form $q=m p+b$. For demand, $m<0$; for supply $m>0$. In both cases, $m=\frac{q_{2}-q_{1}}{p_{2}-p_{1}}$.
Parabolas: Functions have the form $f(x)=a x^{2}+b x+c$.

- Vertex at the point $\left(-\frac{b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)$.
- y-intercept at $(0, c)$
- To find x-intercepts, solve $a x^{2}+b x+c=0$ for x.

Exponential Growth and Decay: Formulas are $Q(t)=Q_{0} e^{k t}$ (growth) and $Q(t)=Q_{0} e^{-k t}$ (decay), where Q_{0} is the quantity at time $t=0$. For growth, $k=\frac{\ln (2)}{\text { doubling time }}$ and for decay, $k=\frac{\ln (2)}{\text { half-life }}$.

Alternate form for exponential functions is $y=A b^{x}$.

