Formulas for Math 1320 Exam 3

Set Operations

1. Union : $A \cup B=\{x \mid x \in A$ or $x \in B\}$
2. Intersection : $A \cap B=\{x \mid x \in A$ and $x \in B\}$
3. Complement : $A^{\prime}=\{x \in S \mid x \notin A\}$
4. Cartesian Product : $A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$ where $A \times B$ is the set of all ordered pairs whose first component is in A and whose second component is in B.

Cardinality

If A is a finite set, then its cardinality is $n(A)=$ the number of elements in A.

1. Union : $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
2. Complement: $n\left(A^{\prime}\right)=n(S)-n(A)$
3. Cartesian Product : $n(A \times B)=n(A) n(B)$

Permutations

$$
n!=n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1 \quad \text { and } \quad 0!=1 .
$$

Permutations of \boldsymbol{n} items taken \boldsymbol{r} at a time

A permutation of n items taken r at a time is an ordered list of r items chosen from a set of n items.

$$
P(n, r)=\frac{n!}{(n-r)!}=n \times(n-1) \times(n-2) \times \cdots \times(n-r+1) .
$$

Combinations of \boldsymbol{n} items taken \boldsymbol{r} at a time

A Combinations of n items taken r at a time is an unordered set of r items chosen from a set of n items.

$$
C(n, r)=\frac{P(n, r)}{r!}=\frac{n!}{r!(n-r)!}
$$

Relative frequency or Estimated Probability

$$
P(E)=\frac{f r(E)}{N}=\frac{\text { Frequency of event } \mathrm{E}}{\text { Total number of experiments }}
$$

Probability Model for Equally Likely Outcomes

$$
P(E)=\frac{\text { Number of favorable outcomes }}{\text { Total number of outcomes }}=\frac{n(E)}{n(S)} .
$$

Probability of the Complement of an Event

$P\left(A^{\prime}\right)=1-P(A) \quad$ (The probability of A not happening is 1 minus the probability of A)
Addition Principle: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
If $A \cap B=\emptyset$, we say that A and B are mutually exclusive, we have $P(A \cup B)=P(A)+P(B)$.
Conditional Probability: If A and B are events with $P(B) \neq 0$, then the probability of A given B is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Multiplication Principle for Conditional Probability: If A and B are events, then $P(A \cap B)=P(A \mid B) P(B)$.
Independent Events: The events are independent if $P(A \cap B)=P(A) P(B)$

