Formulas for Math 1320

Equation of a linear function: $y=m x+b$ or $f(x)=m x+b$, where $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
Cost function: $C(x)=m x+b$, where m is the marginal cost and b is the fixed cost, and $\quad m=\frac{C_{2}-C_{1}}{x_{2}-x_{1}}$.
Revenue: $R(x)=m x$, where m is the marginal revenue. Also, $R=$ (price) \times (quantity).
Profit: $P(x)=R(x)-C(x)$.
Supply and demand: Both have the form $q=m p+b$. For demand, $m<0$; for supply $m>0$. In both cases, $m=$ $\frac{q_{2}-q_{1}}{p_{2}-p_{1}}$.
Parabolas: Functions have the form $f(x)=a x^{2}+b x+c$.
Vertex at the point $\left(-\frac{b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)$.
y-intercept at $(0, c)$
To find x-intercepts, solve $a x^{2}+b x+c=0$ for x.
Exponential Growth and Decay: Formulas are $Q(t)=Q_{0} e^{k t}$ (growth) and $Q(t)=Q_{0} e^{-k t}$ (decay), where Q_{0} is the quantity at time $t=0$. For growth, $k=\frac{\ln (2)}{\text { doubling time }}$ and for decay, $k=\frac{\ln (2)}{\text { half-life }}$.
Alternate form for exponential functions is $y=A b^{x}$.
Simple Interest: $I N T=P V r t$.
Future Value for Simple Interest: $F V=P V+I N T=P V+P V r t=P V(1+r t)$.
Present Value for Simple Interest: $P V=\frac{F V}{1+r t}$.
Future Value for Compound Interest:

$$
F V=P V\left(1+\frac{r}{m}\right)^{m t} \quad \text { or } \quad F V=P V(1+i)^{n}
$$

where $i=r / m$ is the interest paid each compounding period and $n=m t$ is the total number of compounding periods.

Present Value for Compound Interest

$$
P V=\frac{F V}{\left(1+\frac{r}{m}\right)^{m t}} \quad \text { or } \quad P V=\frac{F V}{(1+i)^{n}}=F V(1+i)^{-n}
$$

Effective Interest Rate

$$
r_{\mathrm{eff}}=\left(1+\frac{r_{\mathrm{nom}}}{m}\right)^{m}-1
$$

Sinking Fund:

$$
F V=P M T \frac{(1+i)^{n}-1}{i}
$$

where $i=r / m$ is the interest paid each compounding period and $n=m t$ is the total number of compounding periods.
Payment Formula for a Sinking Fund

$$
P M T=F V \frac{i}{(1+i)^{n}-1}
$$

where $i=r / m$ is the interest paid each compounding period and $n=m t$ is the total number of compounding periods.

Present Value of an Annuity

$$
P V=P M T \frac{1-(1+i)^{-n}}{i}
$$

where $i=r / m$ is the interest paid each compounding period and $n=m t$ is the total number of compounding periods.

Payment Formula for an Ordinary Annuity

$$
P M T=P V \frac{i}{1-(1+i)^{-n}}
$$

where $i=r / m$ is the interest paid each compounding period and $n=m t$ is the total number of compounding periods.

Set Operations

1. Union : $A \cup B=\{x \mid x \in A$ or $x \in B\}$
2. Intersection : $A \cap B=\{x \mid x \in A$ and $x \in B\}$
3. Complement : $A^{\prime}=\{x \in S \mid x \notin A\}$
4. Cartesian Product : $A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$ where $A \times B$ is the set of all ordered pairs whose first component is in A and whose second component is in B.

Cardinality

If A is a finite set, then its cardinality is $n(A)=$ the number of elements in A.

1. Union : $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
2. Complement: $n\left(A^{\prime}\right)=n(S)-n(A)$
3. Cartesian Product : $n(A \times B)=n(A) n(B)$

Permutations

$$
n!=n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1 \quad \text { and } \quad 0!=1
$$

Permutations of \boldsymbol{n} items taken \boldsymbol{r} at a time

 A permutation of n items taken r at a time is an ordered list of r items chosen from a set of n items.$$
P(n, r)=\frac{n!}{(n-r)!}=n \times(n-1) \times(n-2) \times \cdots \times(n-r+1)
$$

Combinations of \boldsymbol{n} items taken \boldsymbol{r} at a time

A Combinations of n items taken r at a time is an unordered set of r items chosen from a set of n items.

$$
C(n, r)=\frac{P(n, r)}{r!}=\frac{n!}{r!(n-r)!}
$$

Relative frequency or Estimated Probability

$$
P(E)=\frac{f r(E)}{N}=\frac{\text { Frequency of event } \mathrm{E}}{\text { Total number of experiments }}
$$

Probability Model for Equally Likely Outcomes

$$
P(E)=\frac{\text { Number of favorable outcomes }}{\text { Total number of outcomes }}=\frac{n(E)}{n(S)} .
$$

Probability of the Complement of an Event

$$
P\left(A^{\prime}\right)=1-P(A) \quad \text { (The probability of } A \text { not happening is } 1 \text { minus the probability of } A \text {) }
$$

Addition Principle: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
If $A \cap B=\emptyset$, we say that A and B are mutually exclusive, we have $P(A \cup B)=P(A)+P(B)$.
Conditional Probability: If A and B are events with $P(B) \neq 0$, then the probability of A given B is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Multiplication Principle for Conditional Probability: If A and B are events, then $P(A \cap B)=P(A \mid B) P(B)$. Independent Events: The events are independent if $P(A \cap B)=P(A) P(B)$

