Formulas for Math 1320

Equation of a linear function: y = mx + b or f(x) = mx + b, where $m = \frac{y_2 - y_1}{x_2 - x_1}$.

Cost function: C(x) = mx + b, where *m* is the marginal cost and *b* is the fixed cost, and $m = \frac{C_2 - C_1}{x_2 - x_1}$.

Revenue:
$$R(x) = mx$$
, where *m* is the marginal revenue. Also, $R = (price) \times (quantity)$.

Profit: P(x) = R(x) - C(x).

Supply and demand: Both have the form q = mp + b. For demand, m < 0; for supply m > 0. In both cases, $m = \frac{q_2-q_1}{p_2-p_1}$.

Parabolas: Functions have the form $f(x) = ax^2 + bx + c$.

Vertex at the point $\left(-\frac{b}{2a}, f\left(\frac{-b}{2a}\right)\right)$.

y-intercept at (0, c)

To find x-intercepts, solve $ax^2 + bx + c = 0$ for x.

Exponential Growth and Decay: Formulas are $Q(t) = Q_0 e^{kt}$ (growth) and $Q(t) = Q_0 e^{-kt}$ (decay), where Q_0 is the quantity at time t = 0. For growth, $k = \frac{\ln(2)}{\text{doubling time}}$ and for decay, $k = \frac{\ln(2)}{\text{half-life}}$.

Alternate form for exponential functions is $y = Ab^x$.

Simple Interest: INT = PV rt.

Future Value for Simple Interest: FV = PV + INT = PV + PV rt = PV(1 + rt).

Present Value for Simple Interest: $PV = \frac{FV}{1+rt}$

Future Value for Compound Interest:

 $FV = PV\left(1 + \frac{r}{m}\right)^{mt}$ or $FV = PV(1+i)^n$

where i = r/m is the interest paid each compounding period and n = mt is the total number of compounding periods.

Present Value for Compound Interest

$$PV = \frac{FV}{\left(1 + \frac{r}{m}\right)^{mt}} \qquad \text{or} \qquad PV = \frac{FV}{(1+i)^n} = FV(1+i)^{-n}$$

Effective Interest Rate

$$r_{\rm eff} = \left(1 + \frac{r_{\rm nom}}{m}\right)^m - 1$$

Sinking Fund:

$$FV = PMT \frac{(1+i)^n - 1}{i}$$

where i = r/m is the interest paid each compounding period and n = mt is the total number of compounding periods.

Payment Formula for a Sinking Fund

$$PMT = FV\frac{i}{(1+i)^n - 1}$$

where i = r/m is the interest paid each compounding period and n = mt is the total number of compounding periods.

Present Value of an Annuity

$$PV = PMT \frac{1 - (1+i)^{-n}}{i}$$

where i = r/m is the interest paid each compounding period and n = mt is the total number of compounding periods.

Payment Formula for an Ordinary Annuity

$$PMT = PV \frac{i}{1 - (1+i)^{-n}}$$

where i = r/m is the interest paid each compounding period and n = mt is the total number of compounding periods.

Set Operations

- 1. Union : $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- 2. Intersection : $A \cap B = \{x | x \in A \text{ and } x \in B\}$
- 3. Complement : $A' = \{x \in S | x \notin A\}$
- 4. Cartesian Product : $A \times B = \{(a, b) | a \in A \text{ and } b \in B\}$ where $A \times B$ is the set of all ordered pairs whose first component is in A and whose second component is in B.

Cardinality

If A is a finite set, then its cardinality is n(A) = the number of elements in A.

- 1. Union : $n(A \cup B) = n(A) + n(B) n(A \cap B)$
- 2. Complement : n(A') = n(S) n(A)
- 3. Cartesian Product : $n(A \times B) = n(A)n(B)$

Permutations

$$n! = n \times (n-1) \times (n-2) \times \dots \times 2 \times 1$$
 and $0! = 1$.

Permutations of *n* items taken *r* at a time

A permutation of *n* items taken *r* at a time is an ordered list of *r* items chosen from a set of *n* items.

$$P(n,r) = \frac{n!}{(n-r)!} = n \times (n-1) \times (n-2) \times \dots \times (n-r+1).$$

Combinations of *n* items taken *r* at a time

A Combinations of *n* items taken *r* at a time is an unordered set of *r* items chosen from a set of *n* items.

$$C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}$$

Relative frequency or Estimated Probability

$$P(E) = \frac{fr(E)}{N} = \frac{\text{Frequency of event E}}{\text{Total number of experiments}}$$

Probability Model for Equally Likely Outcomes

$$P(E) = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} = \frac{n(E)}{n(S)}.$$

Probability of the Complement of an Event

P(A') = 1 - P(A) (The probability of *A not* happening is 1 minus the probability of *A*)

Addition Principle: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

If $A \cap B = \emptyset$, we say that A and B are **mutually exclusive**, we have $P(A \cup B) = P(A) + P(B)$.

Conditional Probability: If A and B are events with $P(B) \neq 0$, then the probability of A given B is

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Multiplication Principle for Conditional Probability: If *A* and *B* are events, then $P(A \cap B) = P(A \mid B)P(B)$. **Independent Events:** The events are independent if $P(A \cap B) = P(A)P(B)$