1.4 Continuity and One-sided Limits

Definition of Continuity — A function fis continuous at c if the following three conditions are met.

1. f(c) is defined.

2. lim_,_ f(x)exists.

3. lim_, f(x)=/(c)

A function is continuous on an open interval (a,b) if it is continuous at each point in the interval. A
function that is continuous on the entire real line (-co0,00) is everywhere continuous.

Examples: Ways a function can fail to be continuous.
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Frequently a function will have different behavior to the left and the right of the value ¢ under question.
In these cases we can look at one-sided limits, limits only from the left or only from the right. Thinking of
the number line with negative values to the left and positive values to the right we have the following

notation:
1. From the right lim . f(x) =L
2. From the left lim f(x) =L

The Existence of a Limit — Let f be a function and let c and L be real numbers. The limit of f(x) as x

approaches cis L if and only if limx_)c, f(x) =L and limx_)c+ f(x) =L.



In examining a graph to find the limit, we are careful to look at the graph from the left to see what the
value of the function is approaching and then from the right of the established value c.
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Definition of Continuity on a Closed Interval — A function fis continuous on the closed interval [a,b] if it
is continuous on the open interval (a,b) and the limit from the right as x approaches a is equal to f(a) and

the limit from the left as x approaches b is equal to f(b).

Examples: Find the limit, if it exists.
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Properties of Continuity — If b is a real number and f and g are continuous at x = ¢, then the following

functions are also continuous at c.

1. Scalar Multiple: bf

2. Sum or difference: f£g

3. Product: fa

4. Quotient: f/9,ifg(x) #0

This means that most elementary functions are continuous at every point in their domains. The key
points to consider are values NOT in the domain.

—

Examples: Find the constant a such that the function is continuous on the entire real line.
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Examples: Find the x-values (if any) at which fis not continuous. Which of the discontinuities are
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Continuity of a Composite Function —If g is continuous at ¢ and f is continuous at g(c), then the

composite function given by (f o f(g(x)) is continuous at c.

Intermediate Value Theorem — If f is continuous on the closed interval [a,b], f(a) # f(b), and k is any
number between f(a) and f(b), then there is at least one number cin [a,b] such that f(c) = k.

A basic interpretation is that while driving from home to work | start at 0 mph when | get in my car and
go 75 mph on the highway. At some point in time | must have been going 55 mph.

Example: Verify that the IVT applies to the indicated interval and find the value of ¢ guaranteed by the
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Example: At 8:00 AM on Saturday a man begins running up the side of a mountain to his weekend
campsite. On Sunday morning at 8:00 AM he runs back down the mountain. It takes him 20 minutes to
run up, but only 10 minutes to run down. At some point on the way down, he realizes that he passed the
same place at exactly the same time on Saturday. Prove that he is correct.
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