1.5 Infinite Limits

Definition of Infinite Limits - Let f be a function that is defined at every real number in some open interval containing c (except possibly at c itself). The statement $\lim _{x \rightarrow c} f(x)=\infty$ means that for each $M>0$ there exists a $\delta>0$ such that $f(x)>M$ whenever $0<|x-c|<\delta$. Similarly, the statement $\lim _{x \rightarrow c} f(x)=-\infty$ means that for each $N<0$ there exists $\delta>0$ such that $f(x)<N$ whenever $0<|x-c|<\delta$. To define the infinite limit from the left, replace $0<|x-c|<\delta$ by $c-\delta<x<c$. To define the infinite limit from the right, replace $0<|x-c|<\delta$ by $c<x<c+\delta$.

Note 1: Having a limit equal to infinity does NOT mean that the limit exists. In fact, it means the limit is unbounded and therefore does not exist.

Note 2: In WebAssign, if the limit is ∞ you should enter that for your answer and not DNE. There does not seem to be a great consistency in this however.

Definition of Vertical Asymptote - If $f(x)$ approaches infinity (positive or negative) as x approaches c from the right or the left, then the line $x=c$ is a vertical asymptote of the graph of $f(x)$.

Theorem on Vertical Asymptotes - Let f and g be continuous on an open interval containing c. If $f(c) \neq 0, g(c)=0$, and there exists and open interval containing c such that $g(x) \neq 0$ for all $x \neq c$ in the interval, then the graph of the function given by $h(x)=\frac{f(x)}{g(x)}$ has a vertical asymptote at $x=c$.

Examples: Find the vertical asymptotes, if any.

1. $f(x)=\frac{-4 x}{x^{2}+4} \longleftarrow$ numerator is zero when $x=0 \quad \begin{aligned} & \leftarrow \text { denominator is never zero for real } x\end{aligned}$
Therefore, no vertical asymptotes.
2. $h(s)=\frac{2 s-3}{2} \quad$ numerator is zero at $s=\frac{3}{2}$
3. $h(s)=\frac{2 s}{s^{2}-25}$ denom. is zero at $s= \pm 5$

Vertical asymptotes are $s=-5$ and $s=+5$
Note: vertical asymptotes are always equations of lines
3. $g(x)=\frac{x^{3}+1}{x+1}=(x+1)\left(x^{2}+x+1\right) \quad$ Both numerator and denominator are z ono at $x=-1$. This is not a vertical asymptote.
4. $h(t)=\frac{t^{2}-2 t}{t^{4}-16}=\frac{t(t-2)}{(t-2)(t+2)\left(t^{2}+4\right)} \quad \begin{aligned} & t=2 \text { is not a vertical asymptote }\end{aligned} \quad$ as it is a removable discontinuity.

However, $t=-2$ is a vertical asymptote.
5. $f(x)=\sec \pi x=\frac{1}{\cos (\pi x)} \quad \begin{aligned} & \text { numerator is never zero. } \\ & \text { denominator is zero when } \pi x=\frac{\pi}{2}+\pi n \text {, where }\end{aligned}$ n is an arbitrary integer.
This means $f(x)=\sec \left(\pi_{x}\right)$ has vertical asymptotes at $x=\frac{1}{2}+n$, for all integers n. (Solve $\pi x=\frac{\pi}{2}+\pi n$ for x).

Examples: Find the limit, if it exists.

1. $\lim _{x \rightarrow 1^{+}} \frac{2+x}{1-x}$ Tables are great if you don't have a graph.
right of 1

x	1	1.001	1.01	1.1
$f(x)$	$?$	-3001	-301	-31

so

$$
\lim _{x \rightarrow 1^{+}} \frac{2+x}{1-x}=-\infty
$$

$f(x)$ gets large and negative as $x \rightarrow 1^{+}$
2. $\lim _{x \rightarrow 4^{\frac{5}{3}}} \frac{x^{2}}{x^{2}+16}$

x	4.1	4.01	4.001	4.0001	4
$f(x)$	0.5123	0.5012	0.5001	0.5000	$?$

$$
\lim _{x \rightarrow 4^{+}} \frac{x^{2}}{x^{2}+16}=\frac{1}{2}
$$

This could have been found by evaluating first. Much easier Land quicker) that way.
3. $\lim _{x \rightarrow(\pi / 2)^{+}} \frac{-2}{\cos x} \quad$ since $\cos \frac{\pi}{2}=0$, we should use a table

Example: A patrol car is parked 50 feet from a long warehouse. The revolving light on top of the car turns at a rate of $1 / 2$ revolution per second. The rate at which the light beam moves along the wall is $r=50 \pi \sec ^{2} \theta \mathrm{ft} / \mathrm{sec}$.
a) Find the rate r when θ is $\pi / 6 . \quad r=50 \pi \sec ^{2}\left(\frac{\pi}{6}\right)$

$$
=50 \pi \frac{1}{\left(\frac{\sqrt{3}}{2}\right)^{2}}=50 \pi \cdot \frac{4}{3}=\frac{200 \pi}{3} \approx 209.4 \mathrm{ft} / \mathrm{sec}
$$

b) Find the rate r when θ is $\pi / 3$.

$$
r=50 \pi \sec ^{2}\left(\frac{\pi}{3}\right)=50 \pi \cdot \frac{1}{\left(\frac{1}{2}\right)^{2}}=200 \pi \approx 628.3 \mathrm{ft} \mathrm{sec}
$$

c) Find the limit of r as $\theta \rightarrow(\pi / 2)^{-}$
we know that r will be $\pm \infty$ at $\pi / 2$ but we need to determine
which one it is. Notice in parts (a) And (b) that r is increasing in
a positive direction. This leads to the conclusion $\lim r=+\infty$ $x \rightarrow \frac{\pi}{2}^{-}$

Example: A 25 foot ladder is leaning against a house. If the base of the ladder is pulled away from the house at a rate of 2 feet per second, the top will move down the wall at a rate of $r=\frac{25}{\sqrt{625-x^{2}}}$ $\mathrm{ft} / \mathrm{sec}$. where x is the distance between the base of the ladder and the house.
a) Find the rate when x is 7 feet.

$$
\left.r=\frac{25}{\sqrt{625-7^{2}}}=\frac{25}{\sqrt{625-49}}=\frac{25}{\sqrt{576}} \approx 1.04 \mathrm{ft} \right\rvert\, \mathrm{sec}
$$

b) Find the rate when x is 15 feet.

$$
r=\frac{25}{\sqrt{625-15^{2}}}=\frac{25}{\sqrt{400}}=\frac{25}{20}=\frac{1.25 \mathrm{ft} / \mathrm{sec}}{\sum_{\text {exact, no rounding used }}}
$$

c) Find the limit of r as $x \rightarrow 25^{-}$Let's try a table... although intial guess from the pattern is $+\infty$.

x	24.1	$\mathbf{2 4 . 5}$	24.9	$\mathbf{2 5}$	yes, it seems reasonable as the closer we get to 25 from the left,
r	3.76	5.03	11.19	$?$? the higher the rate. $\lim _{x \rightarrow 25^{-}} r=+\infty$

Properties of Infinite Limits - Let c and L be real numbers and let f and g be functions such that $\lim _{x \rightarrow c} f(x)=\infty$ and $\lim _{x \rightarrow c} g(x)=L$.

1. Sum or difference: $\quad \lim _{x \rightarrow c}[f(x) \pm g(x)]=\infty$
2. Product:

$$
\lim _{x \rightarrow c}[f(x) g(x)]=\infty, \quad L>0
$$

$$
\lim _{x \rightarrow c}[f(x) g(x)]=-\infty, L<0
$$

3. Quotient:

$$
\lim _{x \rightarrow c} \frac{g(x)}{f(x)}=0
$$

Similar properties hold for one-sided limits and for functions for which the limit of $f(x)$ as x approaches c is $-\infty$.

