1.5 Infinite Limits

Definition of Infinite Limits – Let f be a function that is defined at every real number in some open interval containing c (except possibly at c itself). The statement $\lim_{x\to c} f(x) = \infty$ means that for each M > 0 there exists a $\delta > 0$ such that f(x) > M whenever $0 < |x-c| < \delta$. Similarly, the statement $\lim_{x\to c} f(x) = -\infty$ means that for each N < 0 there exists $\delta > 0$ such that f(x) < N whenever $0 < |x-c| < \delta$. Similarly, the statement $0 < |x-c| < \delta$. To define the infinite limit from the left, replace $0 < |x-c| < \delta$ by $c - \delta < x < c$. To define the infinite limit from the right, replace $0 < |x-c| < \delta$ by $c < x < c + \delta$.

Note 1: Having a limit equal to infinity does NOT mean that the limit exists. In fact, it means the limit is unbounded and therefore does not exist.

Note 2: In WebAssign, if the limit is ∞ you should enter that for your answer and not DNE. There does not seem to be a great consistency in this however.

Definition of Vertical Asymptote – If f(x) approaches infinity (positive or negative) as x approaches c from the right or the left, then the line x = c is a vertical asymptote of the graph of f(x).

Theorem on Vertical Asymptotes – Let f and g be continuous on an open interval containing c. If $f(c) \neq 0$, g(c) = 0, and there exists and open interval containing c such that $g(x) \neq 0$ for all $x \neq c$ in the interval, then the graph of the function given by $h(x) = \frac{f(x)}{g(x)}$ has a vertical asymptote at x = c.

Examples: Find the vertical asymptotes, if any.

2.
$$h(s) = \frac{2s-3}{s^2-25}$$
 numerator is zero at $s = \frac{3}{2}$
denom. is zero at $s = \pm 5$

Vertical asymptotes are 5=-5 and 5=+5 Note: vertical asymptotes are always equations of lines

3.
$$g(x) = \frac{x^3 + 1}{x + 1} = \frac{(x + 1)(x^2 + x + 1)}{x + 1}$$

Both numerator and denominator are zono at X=-1. This is not a vertical asymptote.

4.
$$h(t) = \frac{t^2 - 2t}{t^4 - 16} = \frac{t(t-2)}{(t-2)(t+2)(t^2+4)}$$

$$t = 2 \text{ is not a vertical asymptote}$$
as it is a removable discontinuity.
However, $t = -2$ is a vertical asymptote.

5.
$$f(x) = \sec \pi x = \frac{1}{\cos(\pi x)}$$

 $f(x) = \sec \pi x = \frac{1}{\cos(\pi x)}$
 $f(x) = \sec \pi x = \frac{1}{\cos(\pi x)}$
 $f(x) = \sec \pi x$
 $f(x) = \sec \pi x$

Examples: Find the limit, if it exists.

es: Find the limit, if it exists.
1.
$$\lim_{x \to 1^{+}} \frac{2+x}{1-x}$$
 Tables are great if you don't have a graph.
1. $\lim_{x \to 1^{+}} \frac{2+x}{1-x}$ Tables are great if you don't have a graph.
1. $\lim_{x \to 1^{+}} \frac{2+x}{1-x}$ Tables are great if you don't have a graph.
X | | |.001 | 1.01 | 1.1
 $f(x) ? | -3001 | -301 | -31$
 $f(x)$ gets large and negative as $x \to 1^{+}$
So $\lim_{x \to 1^{+}} \frac{2+x}{1-x} = -\infty$

2.
$$\lim_{x \to 0^{+}} \frac{x^{2}}{x^{2} + 16}$$

$$\lim_{x \to q^{+}} \frac{x^{2}}{x^{2} + 16}$$

$$\lim_{x \to q^{+}} \frac{x^{2}}{x^{2} + 16}$$

$$\lim_{x \to q^{+}} \frac{x^{2}}{x^{2} + 16} = \frac{1}{2}$$

$$\lim_{x \to q^{+}} \frac{x^{2}}{x^{2} + 16} = \frac{1}{2}$$

$$\lim_{x \to (\pi/2)^{+}} \frac{-2}{\cos x}$$

$$\lim_{x \to \pi/2} \frac{1}{\cos x}$$

$$\lim_{x \to \pi/2} \frac{1}{\cos$$

Example: A patrol car is parked 50 feet from a long warehouse. The revolving light on top of the car turns at a rate of 1/2 revolution per second. The rate at which the light beam moves along the wall is $r = 50\pi \sec^2 \theta$ ft/sec.

a) Find the rate r when
$$\theta$$
 is $\pi/6$. $\Gamma = 50\pi \sec^2(\frac{\pi}{6})$
= $50\pi \cdot \frac{1}{4} = \frac{20\pi}{3} \approx 209.4 \text{ ft/sec}$
exact Copproximation

b) Find the rate *r* when θ is $\pi/3$.

$$r = 50\pi \sec^2(\frac{\pi}{3}) = 50\pi \cdot \frac{1}{(\frac{1}{2})^2} = 200\pi \approx 628.3 \text{ ft}|sec$$

c) Find the limit of r as $\theta \to (\pi/2)^-$ We know that r will be $\pm \infty$ at T_2 but we need to determine which one it is. Notice in parts (a) And (b) that r is increasing in a positive direction. This leads to the conclusion $\lim_{X \to \frac{\pi}{2}} r = +\infty$

Example: A 25 foot ladder is leaning against a house. If the base of the ladder is pulled away from the house at a rate of 2 feet per second, the top will move down the wall at a rate of $r = \frac{25}{\sqrt{625 - x^2}}$ ft/sec. where *x* is the distance between the base of the ladder and the house.

a) Find the rate when *x* is 7 feet.

$$V = \frac{25}{\sqrt{625 - 7^2}} = \frac{25}{\sqrt{625 - 4q}} = \frac{25}{\sqrt{576}} \approx 1.04 \text{ ft}|\text{sec}}$$

exact approx.

b) Find the rate when *x* is 15 feet.

 $r = \frac{25}{\sqrt{625 - 15^2}} = \frac{25}{\sqrt{405}} = \frac{25}{20} = 1.25$ ft/sec Lexact, no rounding used

c) Find the limit of r as $x \rightarrow 25^-$ Let's try a table ... although initial gress from the pattern is two.

X 24.1 24.5 24.9 25 yes, it seems reasonable as the

$$r$$
 3.76 5.03 11.19? the higher the rate. $lim r = +\infty$
 $X = 25^{-1}$

Properties of Infinite Limits – Let *c* and *L* be real numbers and let *f* and *g* be functions such that $\lim_{x\to c} f(x) = \infty$ and $\lim_{x\to c} g(x) \cong L$.

1. Sum or difference:
1. Sum or difference:
2. Product:

$$\lim_{x \to c} \left[f(x) \pm g(x) \right] = \infty, \quad L > 0$$

$$\lim_{x \to c} \left[f(x)g(x) \right] = -\infty, \quad L < 0$$
3. Quotient:

$$\lim_{x \to c} \frac{g(x)}{f(x)} = 0$$

Similar properties hold for one-sided limits and for functions for which the limit of f(x) as x approaches c is $-\infty$.