Chapter Two: Differentiation
2.1 The Derivative and the Tangent Line Problem

The difference quotient is introduced in pre-calculus as a rate of change. This will be the basis of the definition of derivatives.

Definition of Tangent Line with Slope m - If f is defined on an open interval containing c, and if the limit

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=m
$$

exists, then the line passing through $(c, f(c))$ with slope m is the tangent line to the graph of f at the point (c, fac)).

The slope of the tangent line is also called the slope of the graph.

Examples: Find the slope of the tangent line to the graph of the function at the given point.

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
& f(x)=\frac{3}{2} x+1,(-2,-2) \\
& \frac{C=-2}{} \\
& \begin{aligned}
f(-2+\Delta x) & =\frac{3}{2}(-2+\Delta x)+1 \\
& =-3+\frac{3}{2} \Delta x+1 \\
& =-2+\frac{3}{2} \Delta x
\end{aligned}
\end{aligned} . \begin{aligned}
f(-1)
\end{aligned}
\end{aligned}
$$

$$
=\lim _{\Delta x \rightarrow 0} \frac{3}{2}=\frac{3}{2}
$$

$$
f(-2)=\frac{3}{2}(-2)+1=-3+1=-2 \quad \text { The slope of the tangent line to }
$$ the graph of $f(x)=\frac{3}{2} x+1$ at $<=-2$ is $\frac{3}{2}$.

Notice that the slope of any linear function is going to also be the slope of the tangent.

$$
\begin{aligned}
& \text { 2. } \begin{aligned}
& g(x)=-x^{2},(1,5) \\
& C=1 \\
& g(1+\Delta x)=6-(1+\Delta x)^{2} \\
&=6-\left(1+2 \Delta x+(\Delta x)^{2}\right) \\
&=6-1-2 \Delta x-(\Delta x)^{2} \\
&=5-2 \Delta x-(\Delta x)^{2} \\
& G(1)=6-(1)^{2}=6-1=5
\end{aligned}
\end{aligned}
$$

3. $h(t)=t^{2}+3,(-2,7)$

$$
c=-2
$$

$$
h(-2+\Delta t)=(-2+\Delta t)^{2}+3
$$

$$
=\left(4-4 \Delta t+(\Delta t)^{2}\right)+3
$$

$$
=7-4 \Delta t+(\Delta t)^{2}
$$

$$
h(-2)=(-2)^{2}+3=4+3=7
$$

$$
\begin{aligned}
m & =\lim _{\Delta x \rightarrow 0} \frac{5-2 \Delta x-(\Delta x)^{2}-5}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{-2 \Delta x-(\Delta x)^{2}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta x(-2-\Delta x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \begin{array}{l}
\text { factor in } \\
\text { order to } \\
\text { cancel }
\end{array} \\
& =-2-\Delta x)
\end{aligned}
$$

$$
\begin{aligned}
m= & \lim _{\Delta t \rightarrow 0} \frac{7-4 \Delta t+(\Delta t)^{2}-7}{\Delta t} \\
= & \lim _{\Delta t \rightarrow 0} \frac{-4 \Delta t+(\Delta t)^{2}}{\Delta t} \\
= & \lim _{\Delta t \rightarrow 0} \frac{\Delta t(-4+\Delta t)}{\Delta t} \\
= & \lim _{\Delta t \rightarrow 0}(-4+\Delta t)=-4
\end{aligned}
$$

Definition of the Derivative of a Function - The derivative of f at x is given by

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

provided the limits exists. For all x for which this limit exists, f^{\prime} is a function of x.

Notation - The following are equivalent: $f^{\prime}(x), \frac{d y}{d x}, y^{\prime}, \frac{d}{d x}[f(x)], D_{x}[y]$

Examples: Find the derivative by the limit process.

1. $f(x)=3 x+2$

$$
\begin{aligned}
f(x+\Delta x) & =3(x+\Delta x)+2 \\
& =3 x+3 \Delta x+2 \\
f(x+\Delta x) & =3 x+3 \Delta x+2 \\
-f(x) & =\frac{-(3 x}{3 \Delta x} \\
f(x+\Delta x)-f(x) & =
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} 3 \frac{3 \Delta x}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} 3 \\
& =3
\end{aligned}
$$

That is, $f^{\prime}(x)=3$.

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{-2 x \Delta x-(\Delta x)^{2}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta x(-2 x-\Delta x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}(-2 x-\Delta x) \\
& =-2 x
\end{aligned}
$$

2. $g(x)=2-x^{2}$

$$
\begin{aligned}
& g(x+\Delta x)=2-(x+\Delta x)^{2} \\
&=2-\left(x^{2}+2 x \Delta x+(\Delta x)^{2}\right) \\
&=2-x^{2}-2 x \Delta x-(\Delta x)^{2} \\
& g(x+\Delta x)-g(x)=-2 x \Delta x-(\Delta x)^{2}
\end{aligned}
$$

Examples: Find an equation of the tangent line to the graph of f at the given point.

$$
\text { 1. } f(x)=x^{2}+3 x+4,(-2,2) \longrightarrow y-f(c)=f^{\prime}(c)(x-c)
$$

$$
\begin{aligned}
f(x+\Delta x) & =(x+\Delta x)^{2}+3(x+\Delta x)+4 \\
& =x^{2}+2 x \Delta x+(\Delta x)^{2}+3 x+3 \Delta x+4
\end{aligned} \quad \rightarrow f^{\prime}(x)=\lim _{\Delta x \rightarrow 0}(2 x+\Delta x+3)=2 x+3
$$

$$
f(x+\Delta x)-f(x)=2 x \Delta x+(\Delta x)^{2}+3 \Delta x
$$

Tangent line

$$
\frac{f(x+\Delta x)-f(x)}{\Delta x}=2 x+\Delta x+3
$$

$$
\begin{aligned}
& y-2=-1(x-(-2)) \\
& y-2=-x-1 \\
& y=-x+1
\end{aligned}
$$

2. $f(x)=\sqrt{x-1},(5,2)$

$$
\begin{aligned}
& f(5+\Delta x)=\sqrt{5+\Delta x-1}=\sqrt{4+\Delta x} \\
& f(5)=\sqrt{5-1}=\sqrt{4}=2 \\
& f(5+\Delta x)-f(5)=\sqrt{4+\Delta x}-2 \\
& \frac{f(5+\Delta x)-f(5)}{\Delta x}=\frac{\sqrt{4+\Delta x}-2}{\Delta x} \cdot \frac{\sqrt{4+\Delta x}+2}{\sqrt{4+\Delta x}+2} \\
& \\
& =\frac{4+\Delta x-4}{\sqrt{4+\Delta x}+2) \Delta x}=\frac{1}{\sqrt{4+\Delta x}+2}
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(5) & =\lim _{\Delta x \rightarrow 0} \frac{1}{\sqrt{4+\Delta x}+2} \\
& =\frac{1}{\sqrt{4}+2} \\
& =\frac{1}{4}=m
\end{aligned}
$$

Tangent line is $y-2=\frac{1}{4}(x-5)$

$$
\begin{aligned}
& y-2=\frac{1}{4} x-\frac{5}{4} \\
& y=\frac{1}{4} x+\frac{3}{4}
\end{aligned}
$$

3. $f(x)=\frac{1}{x+1},(0,1)$

$$
\begin{aligned}
& f(0+\Delta x)=\frac{1}{\Delta x+1} \\
& \begin{aligned}
& f(0)=1 \\
& f(0+\Delta x)-f(0)=\frac{1}{\Delta x+1}-1 \\
&=\frac{1}{\Delta x+1}-\frac{\Delta x+1}{\Delta x+1} \\
&=\frac{-\Delta x}{\Delta x+1}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(\Delta)=\lim _{\Delta x \rightarrow 0} \frac{\frac{-\Delta x}{\Delta x+1}}{\Delta x} & =\lim _{\Delta x \rightarrow 0} \frac{-\Delta x}{\Delta x+1} \cdot \frac{1}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{-1}{\Delta x+1}=-1
\end{aligned}
$$

$$
\begin{aligned}
& y-1=-1(x-0) \\
& y-1=-x \\
& y=-x+1
\end{aligned}
$$

Example: Find an equation of the line that is tangent to $f(x)=x^{3}+2$ and is parallel to $3 x-y-4=0$.

$$
\begin{aligned}
& f(x+\Delta x)=(x+\Delta x)^{3}+2 \\
& =x^{3}+3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3}+2 \\
& \text { same slope } \\
& 3 x-4=y \\
& \text { So } m=3 \\
& f(x+\Delta x)-f(x)=3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3} \\
& \frac{f(x+\Delta x)-f(x)}{\Delta x}=3 x^{2}+3 x \Delta x+(\Delta x)^{2} \\
& \text { on } f(x) \text { where } f^{\prime}(x)=3 \\
& \text { First we find } f^{\prime}(x) \text {. } \\
& f^{\prime}(x)=\lim _{\Delta x \rightarrow 0}\left(3 x^{2}+3 x \Delta x+(\Delta x)^{2}\right)=3 x^{2} \\
& \text { If } f^{\prime}(x)=3 x^{2} \text {, then } f^{\prime}(x)=3 \text { when } \\
& 3 x^{2}=3 \text { or } x= \pm 1 \text {. } \\
& \text { This gives two tangent lines, } \\
& \text { one through }(-1,1) \text { and one at }(1,3) \\
& \text { we must find a point } \\
& \text { on } f(x) \text { where } f^{\prime}(x)=3 \\
& \text { First we find } f^{\prime}(x) \text {. } \\
& y-1=3(x-(-1)) \\
& y-1=3 x+3 \quad \text { Verify both } \\
& y=3 x+4 \text { are accurate } \\
& \begin{aligned}
y-3 & =3(x-1) \quad \text { using a } \\
y-3 & =3 x-3
\end{aligned} \\
& y-3=3 x-3 \\
& y=3 x
\end{aligned}
$$

Alternative Definition of the Derivative - The derivative of f at c is

$$
f^{\prime}\binom{c}{x}=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

provided this limit exists. Notice that this quotient is just the formula for the slope of a line between two points and the limit is what makes it work for nonlinear functions.

Examples: Use the alternative form of the derivative to find the derivative at $x=c$, if it exists.

$$
\begin{aligned}
& \text { 1. } f(x)=x(x-1), c=1 \\
& f^{\prime}(x)=\lim _{x \rightarrow 1} \frac{x(x-1)-1(1-1)}{x-1}=\lim _{x \rightarrow 1} \frac{x(x-1)}{x-1}=\lim _{x \rightarrow 1} x=1 \\
& f^{\prime}(1) \text { not } f^{\prime}(x) \quad \text { So } f^{\prime}(1)=1 \\
& \text { in general }
\end{aligned}
$$

2. $f(x)=\frac{2}{x}, c=5$

$$
f^{\prime}(5)=\lim _{x \rightarrow 5} \frac{\frac{2}{x}-\frac{2}{5}}{x-5}=\lim _{x \rightarrow 5} \frac{-2}{5 x}=\frac{-2}{5(5)}=-\frac{2}{25}
$$

c) $\frac{2}{x}-\frac{2}{5}=\frac{2}{x}-\frac{5}{5}-\frac{2}{5}-\frac{x}{x}=\frac{10}{5 x}-\frac{2 x}{5 x}=\frac{10-2 x}{5 x}$
b) $\frac{\frac{10-2 x}{5 x}}{x-5}-\frac{102 x}{5 x} \cdot \frac{1}{x-5}=\frac{2\left(5^{-1}-x\right)}{5 x} \cdot \frac{1}{x-5}=\frac{-2}{5 x}$

