2.2 Basic Differentiation Rules and Rates of Change

The Constant Rule - The derivative of a constant function is 0 . That is, if c is a real number, then $\frac{d}{d x}[c]=0$.

The Power Rule - If n is a rational number, then the function $f(x)=x^{n}$ is differentiable and $\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$. For f to be differentiable at $x=0, n$ must be a number such that x^{n-1} is defined on an interval containing 0 .

Examples: Find the slope of the tangent line at the given value.

1. $f(x)=x^{5}, x=2 \quad$ Using the power rule, $f^{\prime}(x)=5 x^{5-1}=5 x^{4}$.

$$
m=f^{\prime}(2)=5(2)^{4}=5(16)=80
$$

2. $f(x)=x^{2 / 3}, x=1 \quad$ Power rule: $f^{\prime}(x)=\frac{2}{3} x^{\frac{2}{3}-1}=\frac{2}{3} x^{-1 / 3}$

$$
m=f^{\prime}(1)=\frac{2}{3}(1)^{-1 / 3}=\frac{2}{3}
$$

3. $f(x)=\frac{1}{x^{3}}, x=-2$
simplifylrewrite first: $f(x)=\frac{1}{x^{3}}=x^{-3}$
power rule: $\quad f^{\prime}(x)=-3 x^{-3-1}=-3 x^{-4}=-\frac{3}{x^{4}}$

$$
m=f^{\prime}(-2)=\frac{-3}{(-2)^{4}}=\frac{-3}{16}
$$

The Constant Multiple Rule - If f is a differentiable function and c is a real number, then $c f$ is also differentiable and $\frac{d}{d x}[c f(x)]=c f^{\prime}(x)$.

Examples: Find the derivative.

1. $f(x)=3 x^{5} \quad f^{\prime}(x)=3\left(5 x^{5-1}\right)=15 x^{4}$
2. $f(x)=17 x^{2} \quad f^{\prime}(x)=17\left(2 x^{2-1}\right)=34 x$
3. $f(x)=-5 x^{-7} \quad f^{\prime}(x)=-5\left(-7 x^{-7-1}\right)=35 x^{-8}$

The Sum and Difference Rules - The sum (or difference) of two differentiable functions f and g is itself differentiable. Moreover, the derivative of $f+g$ (or $f-g$) is the sum (or difference) of the derivatives of f and g.

$$
\begin{aligned}
& \frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x) \\
& \frac{d}{d x}[f(x)-g(x)]=f^{\prime}(x)-g^{\prime}(x)
\end{aligned}
$$

With constant multiplies and sums or difference, we can now find the derivative of any polynomial or root function using the rules rather than limits.

Examples: Use the rules of differentiation to find the derivative of the function.

1. $f(x)=-9 \quad$ Constant function so $f^{\prime}(x)=0$
2. $f(x)=\sqrt[4]{x}$

$$
f(x)=x^{1 / 4} \quad \text { so } \quad f^{\prime}(x)=\frac{1}{4} x^{\frac{1}{4}-1}=\frac{1}{4} x^{-3 / 4}
$$

3. $f(x)=x^{2}-2 x+3$

$$
f^{\prime}(x)=2 x^{2-1}-2\left(\left(x^{1-1}\right)+0=2 x-2\right.
$$

4. $y=8-x^{3}$

$$
y^{\prime}=0-3 x^{3-1}=-3 x^{2}
$$

5. $f(x)=2 x^{3}-x^{2}+3 x$

$$
\begin{aligned}
f^{\prime}(x) & =2\left(3 x^{3-1}\right)-2 x^{2-1}+3\left(1 x^{1-1}\right) \\
& =6 x^{2}-2 x+3
\end{aligned}
$$

Notice that the derivative of $y=m x$ is always m. (why? $y=m x$ so $y^{\prime}=m\left(\mid x^{1-1}\right)=m x^{d}=m_{-}$)

Derivatives of the Sine and Cosine Functions - By observing the graphs of these two basic trig functions we find that

$$
\frac{d}{d x}[\sin x]=\cos x \quad \frac{d}{d x}[\cos x]=-\sin x
$$

you can do a similar analysis for $y=\cos x$ and $y^{\prime}=-\sin x$.

Examples: Use the rules of differentiation to find the derivative of the function.

1. $g(t)=\pi \cos t \quad g^{\prime}(t)=\pi(-\sin t)=-\pi \sin t$

Get in the habit of simplifying derivatives.
2. $y=7+\sin x$

$$
y^{\prime}=0+\cos x=\cos x
$$

3. $y=\frac{5}{(2 x)^{3}}+2 \cos x=\frac{5}{8 x^{3}}+2 \cos x=\frac{5}{8} x^{-3}+2 \cos x$ (Rewrite)

$$
y^{\prime}=\frac{5}{8}\left(-3 x^{-3-1}\right)+2(-\sin x)=-\frac{15}{8} x^{-4}-2 \sin x=\frac{-15}{8 x^{4}}-2 \sin x
$$

Examples: Find the slope of the graph of the function at the given point. slope \Rightarrow derivative

$$
\begin{aligned}
& \text { 1. } f(x)=\frac{8}{x^{2}},(2,2) \\
& f(x)=8 x^{-2} \text { so } f^{\prime}(x)=8\left(-2 x^{-2-1}\right)=-16 x^{-3}=-\frac{16}{x^{3}} \\
& \text { At }(2,2), f^{\prime}(2)=-\frac{16}{(2)^{3}}=-\frac{16}{8}=-2
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } f(t)=3-\frac{3}{5 t},\left(\frac{3}{5}, 2\right) \quad f(t)=3-\frac{3}{5} t^{-1} \\
& f^{\prime}(t)=0-\frac{3}{5}\left(-1 t^{-1-1}\right)=0+\frac{3}{5} t^{-2}=\frac{3}{5 t^{2}} \\
& f^{\prime}\left(\frac{3}{5}\right)=\frac{3}{5\left(\frac{3}{5}\right)^{2}}=\frac{3}{5\left(\frac{9}{25}\right)}=\frac{3}{\frac{9}{5}}=\frac{3}{1} \cdot \frac{5}{9}= \\
& \text { divide by } \frac{9}{5}
\end{aligned}
$$

is molt by $5 / 9$
3.

$$
\begin{aligned}
& f(\theta)=4 \sin \theta-\theta,(0,0) \\
& f^{\prime}(\theta)=4(\cos \theta)-1 \theta^{1-1}=4 \cos \theta-1 \\
& f^{\prime}(0)=4 \cos \theta-1=4(1)-1=4-1=3
\end{aligned}
$$

Examples: Find the derivative.

1. $f(x)=\frac{x^{3}-6}{x^{2}} \quad$ No quotient rule yet so first we simplify

$$
\begin{aligned}
& f(x)=\frac{x^{3}}{x^{2}}-\frac{6}{x^{2}}=x-\frac{6}{x^{2}}=x-6 x^{-2} \\
& f^{\prime}(x)=1-6\left(-2 x^{-2-1}\right)=1+12 x^{-3}=1+\frac{12}{x^{3}}
\end{aligned}
$$

2. $y=3 x\left(6 x-5 x^{2}\right)$ no product rule yet so simplify/rewrite

$$
\begin{aligned}
& y=18 x^{2}-15 x^{3} \\
& y^{\prime}=18\left(2 x^{2-1}\right)-15\left(3 x^{3-1}\right)=36 x-45 x^{2}
\end{aligned}
$$

3. $y=\frac{2}{\sqrt[3]{x}}+3 \cos x=2 x^{-1 / 3}+3 \cos x$

$$
y^{\prime}=2\left(-\frac{1}{3} x^{-\frac{1}{3}-1}\right)+3(-\sin x)=-\frac{2}{3} x^{-4 / 3}-3 \sin x
$$

Example: Determine the points) at which the graph of $f(x)=x+\sin x, 0 \leq x<2 \pi$ has a horizontal tangent line. We are looking for points where $f^{\prime}(x)=0$

$$
\begin{aligned}
f^{\prime}(x) & =1+\cos x \\
0 & =1+\cos x \\
-1 & =\cos x \text { on } 0 \leq x<2 \pi \quad \text { Find the point }(x, y) \text { with } x=\pi \\
\pi & =x \quad \begin{aligned}
&
\end{aligned} \quad \begin{aligned}
&=f(\pi)=\pi+\sin \pi=\pi+0=\pi \\
& f(x)=x+\sin x \text { has a horizontal tangent } \\
& \text { line at the point }(\pi, \pi)
\end{aligned}
\end{aligned}
$$

Example: The number of gallons N of regular unleaded gasoline sold by a gasoline station at a price of p dollars per gallon is given by $N=f(p)$.
a) Describe the meaning of $f^{\prime}(2.979)$

The derivative has units of N divide by units of P so $f^{\prime}(2.979)$ is the rate of change of number of gallons sold divide by price per gallon when $p=2.979 /$ gallon
b) Is $f^{\prime}(2.979)$ usually positive or negative? Explain.

Usually this value is negative as stations will sell less fuel at higher prices. (The rate at which they sell fuel is negative.)

