2.5 Implicit Differentiation

An explicit function is a function that explicitly tells you how to find one of the variable values such as $y=f(x)$. An implicit function is less direct in that no variable has been isolated and in many cases it cannot be isolated. An example might be $x y=6$ or $x^{2}-x y+y^{2}-4=0$. In the first example, we could isolate either variable easily. In the second example it is not easy to isolate either variable (possible but not easy).

Guidelines for Implicit Differentiation -

1. Differentiate both sides of the equation with respect to x.
2. Collect all terms involving $d y / d x$ on the left side of the equation and move all other terms to the right side of the equation.
3. Factor $d y / d x$ out of the left side of the equation.
4. Solve for $d y / d x$.

Examples: Find $d y / d x$ by implicit differentiation.

1. $x^{2}-y^{2}=25$ Always remember $y=y(x)$. So anytime you take the derivative of y you get $y^{\prime}=\frac{d y}{d x}$.
Derivative of x^{2} is $2 x$
Derivative of y^{2} is $2 y \frac{d y}{d x}$ (chain rule)
Derivative of 25150
Derivative of $x^{2}-y^{2}=25$ is $2 x-2 y \frac{d y}{d x}=0$. Now Solve for $\frac{d y}{d x}$:

$$
2 x=2 y \frac{d y}{d x} \rightarrow \frac{2 x}{2 y}=\frac{d y}{d x}-\frac{d y}{d x}=\frac{x}{y}
$$

$$
\begin{aligned}
& \text { 2. } x^{3}+y^{3}=64 \\
& 3 x^{2}+3 y^{2} \frac{d y}{d x}=0 \\
& 3 y^{2} \frac{d y}{d x}=-3 x^{2} \\
& \frac{d y}{d x}=\frac{-3 x^{2}}{3 y^{2}}=\frac{-x^{2}}{y^{2}} \\
& \text { 3. } \frac{\left.x^{2} y+\begin{array}{l}
\text { Product } \\
\text { Product }
\end{array}\right)}{} \\
& x^{2}\left(\frac{d y}{d x}\right)+y(2 x)+y^{2}(1)+x\left(2 y \frac{d y}{d x}\right)=0 \\
& x^{2} \frac{d y}{d x}+2 x y+y^{2}+2 x y \frac{d y}{d x}=0 \\
& x^{2} \frac{d y}{d x}+2 x y \frac{d y}{d x}=-y^{2}-2 x y \\
& \frac{d y}{d x}\left(x^{2}+2 x y\right)=-y^{2}-2 x y \\
& \frac{d y}{d x}=\frac{-y^{2}-2 x y}{x^{2}+2 x y} \\
& \text { 4. } \cot y=x-y \\
& -\csc ^{2} y \frac{d y}{d x}=1-\frac{d y}{d x} \\
& \frac{d y}{d x}\left(1-\csc ^{2} y\right)=1 \\
& \frac{d y}{d x}-\csc ^{2} y \frac{d y}{d x}=1 \\
& \frac{d y}{d x}=\frac{1}{1-\csc ^{2} y}
\end{aligned}
$$

Examples: Find two explicit functions by solving the equation for y in terms of x.

1. $x^{2}+y^{2}=64$

$$
\begin{aligned}
y^{2} & =64-x^{2} \\
\sqrt{y^{2}} & = \pm \sqrt{64-x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& y=+\sqrt{64-x^{2}} \\
& \text { and } \\
& y=-\sqrt{64-x^{2}}
\end{aligned}
$$

To find $\frac{d y}{d x}$ at this point, we would have to find turd derivatives.
Implicit make it easier
2. $16 y^{2}-x^{2}=16$

$$
\begin{aligned}
16 y^{2} & =16+x^{2} \\
y^{2} & =\frac{16+x^{2}}{16}
\end{aligned}
$$

$$
\begin{aligned}
y & = \pm \sqrt{\frac{16+x^{2}}{16}} \\
y & =\frac{\sqrt{16+x^{2}}}{4} \text { and } y=\frac{-\sqrt{16+x^{2}}}{4}
\end{aligned}
$$

Examples: Find $d y / d x$ by implicit differentiation and evaluate the derivative at the given point.

1. $x y=6,(-6,-1) \quad$ Product rule

$$
\begin{aligned}
& x \frac{d y}{d x}+y(1)=0 \\
& x \frac{d y}{d x}+y=0 \\
& x \frac{d y}{d x}=-y
\end{aligned} \quad \therefore \begin{aligned}
& \frac{d y}{d x}=\frac{-y}{x} \\
& \left.\frac{d y}{d x}\right|_{(-6,-1)}=\frac{-(-1)}{-6}=-\frac{1}{6}
\end{aligned}
$$

2. $(x+y)^{3}=x^{3}+y^{3} \quad(-1,1)$

$$
\left.\left.\left.\begin{array}{l}
3(x+y)^{2}\left(1+\frac{d y}{d x}\right)=3 x^{2}+3 y^{2} \frac{d y}{d x} \\
3(x+y)^{2}+3(x+y)^{2} \frac{d y}{d x}=3 x^{2}+3 y^{2} \frac{d y}{d x} \\
3(x+y)^{2} \frac{d y}{d x}-3 y^{2 d y} \\
d x
\end{array}=3 x^{2}-3(x+y)^{2}\right) ~=3 x^{2}-3(x+y)^{2}\right) ~ \$ 3(x+y)^{2}-3 y^{2}\right]=3
$$

$$
\int \frac{d y}{d x}=\frac{3 x^{2}-3(x+y)^{2}}{3(x+y)^{2}-3 y^{2}}
$$

at $(-1,1)$
$\frac{d y}{d x}=\frac{3(-1)^{2}-3(-1+1)^{2}}{3(-1+1)^{2}-3(1)^{2}}$
$\frac{d y}{d x}=\frac{3-0}{\Delta-3}$

$$
\frac{d y}{d x}=\frac{3}{-3}=-1
$$

Examples: Find $d^{2} y / d x^{2}$ in terms of x and y. - first find $\frac{d y}{d x}$ then take the derivative again.

$$
\begin{aligned}
& \text { 1. } x^{2} y^{2}-2 x=3 \\
& x^{2}\left(2 y \frac{d y}{d x}\right)+y^{2}(2 x)-2=0 \\
& 2 x^{2} y \frac{d y}{d x}+2 x y^{2}-2=0 \\
& 2 x^{2} y \frac{d y}{d x}=2-2 x y^{2} \\
& \frac{d y}{d x}=\frac{2-2 x y^{2}}{2 x^{2} y}=\frac{1-x y^{2}}{x^{2} y}
\end{aligned}
$$

$$
\frac{d^{2} y}{d x^{2}}=\frac{x^{2} y\left(\Delta-\left(x^{2} y \frac{d y}{d x}+y^{2}(1)\right)-\left(1-x y^{2}\right)\left[x^{2} \frac{d y}{d x}+y(2 x)\right]\right.}{\left(x^{2} y\right)^{2}}
$$

We clean if up by substituting $\frac{d y}{d x}$ as indicated.

$$
\frac{d^{2} y}{d x^{2}}=\frac{-x^{2} y\left(2 x y \frac{1-x y^{2}}{x^{2} y}+y^{2}\right)-\left(1-x y^{2}\right)\left(x^{2} \frac{1-x y^{2}}{x^{2} y}+2 x y\right)}{x^{4} y^{2}}
$$

2. $1-x y=x-y$

$$
\begin{aligned}
& 0-\left(x \frac{d y}{d x}+y(1)\right)=1-\frac{d y}{d x} \\
& -x \frac{d y}{d x}-y=1-\frac{d y}{d x} \\
& \frac{d y}{d x}-x \frac{d y}{d x}=1+y \\
& \frac{d y}{d x}(1-x)=1+y \text { so } \frac{d y}{d x}=\frac{1+y}{1-x} \\
& \frac{d_{y}^{2}}{d x^{2}}=\frac{(1-x) \frac{d y}{d x}-(1+y)(-1)}{(1-x)^{2}}=\frac{(1-x) \frac{1+y}{1-x}+(1+y)}{(1-x)^{2}}=\frac{1+y+1+y}{(1-x)^{2}}=\frac{2+2 y}{(1-x)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. } y^{2}=10 x \\
& 2 y \frac{d y}{d x}=10, \quad \frac{d y}{d x}=\frac{10}{2 y}=\frac{5}{y} \\
& \frac{d^{2} y}{d x^{2}}=\frac{y(0)-5 \frac{d y}{d x}}{y^{2}}=\frac{-5\left(\frac{5}{y}\right)}{y^{2}}=\frac{-25}{y}
\end{aligned}
$$

