Definitions of Increasing and Decreasing Functions -
A function f is increasing on an interval if for any two numbers x_{1} and x_{2} in the interval, $x_{1}<x_{2}$ implies $f\left(x_{1}\right)<f\left(x_{2}\right)$.

A function f is decreasing on an interval if for any two numbers x_{1} and x_{2} in the interval, $x_{1}<x_{2}$ implies $f\left(x_{1}\right)>f\left(x_{2}\right)$.

Theorem 3.5 - Let f be a function that is continuous on the closed interval $[\mathrm{a}, \mathrm{b}]$ and differentiable on the open interval (a, b).

1. If $f^{\prime}(x)>0$ for all x in (a, b), then f is increasing on $[\mathrm{a}, \mathrm{b}]$.
2. If $f^{\prime}(x)<0$ for all x in (a, b), then f is decreasing on $[\mathrm{a}, \mathrm{b}]$.
3. If $f^{\prime}(x)=0$ for all x in (a, b), then f is constant on $[\mathrm{a}, \mathrm{b}]$.

Guidelines for Finding Intervals on which a Function is Increasing or Decreasing - Let f be continuous on the interval (a, b). To find the open intervals on which f is increasing or decreasing, use the following steps.

1. Locate the critical numbers of f in (a, b), and use these numbers to determine test intervals.
2. Determine the sign of $f^{\prime}(x)$ at one test value in each of the intervals.
3. Use Theorem 3.5 to determine whether f is increasing or decreasing on each interval.

Examples: Identify the open intervals on which the function is increasing or decreasing.

1. $h(x)=27 x-x^{3}$

$$
\begin{aligned}
h^{\prime}(x) & =27-3 x^{2} \\
0 & =27-3 x^{2} \\
3 x^{2} & =27 \\
x^{2} & =9 \\
x & = \pm 3 \text { critical }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{-4}{\stackrel{-4}{4}+3}+\begin{array}{l}
0 \\
-3
\end{array} \text { test points } \\
& f^{\prime}(-4)=27-3(-4)^{2}=27-3(16)=\text { Negative } \\
& f^{\prime}(0)=27-3(0)^{2}=\text { positive } \\
& f^{\prime}(4)=27-3(4)^{2}=\text { negative } \\
& \text { increasing }(-3,3) \\
& \text { decreasing }(-\infty,-3) \cup(3, \infty)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } \begin{array}{l}
y=x+\frac{4}{x} \\
y^{\prime}=1-\frac{4}{x^{2}} \\
x=0 \text { is a critical number } \\
0=1-\frac{4}{x^{2}} \\
\frac{4}{x^{2}}=1 \Rightarrow x^{2}=4 \\
x= \pm 2 \quad \text { critical } \\
x u m b e r s
\end{array}
\end{aligned}
$$

The First Derivative Test - Let c be a critical number of a function f that is continuous on an open interval I containing c. If f is differentiable on the interval, except possibly at c, then $f(c)$ can be classified as follows.

1. If $f^{\prime}(x)$ changes from negative to positive at c, then f has a relative minimum at $(c, f(c)$).
2. If $f^{\prime}(x)$ changes from positive to negative at c, then f has a relative maximum at ($c, f(c)$).
3. If $f^{\prime}(x)$ is positive on both sides of c or negative on both sides of c, then $f(c)$ is neither a relative minimum nor a relative maximum.

Examples: (a) Find the critical numbers of f, (b) find the open intervals on which the function is increasing or decreasing, and (c) apply the First Derivative Test to identify all relative extrema.

1. $f(x)=x^{2}+6 x+10$

$$
\begin{aligned}
f^{\prime}(x) & =2 x+6 \\
0 & =2 x+6 \\
-6 & =2 x \\
\text { (a) }-3 & =x \text { critical number }
\end{aligned}
$$

$$
f^{\prime}(-4)=2(-4)+6=\text { negative }
$$

$$
f^{\prime}(0)=2(0)+6=\text { positive }
$$

$$
\begin{aligned}
& \text { (6) increasing }(-3, \infty) \\
& \text { decreasing }(-\infty,-3)
\end{aligned}
$$

(c) Changes decreasing $(-)$ to increasing (t) at $x=-3$, so a local minimum occurs at $(-3, f(-3))=(-3,1)$.
2. $f(x)=x^{3}-6 x^{2}+15$

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-12 x \\
0 & =3 x^{2}-12 x \\
0 & =3 x(x-4)
\end{aligned}
$$

(a) $x=0, x=4$ critical numbers
(c) + to - at $x=0 \Rightarrow$ maximum

$+0-4+$
$f^{\prime}(-1)=3(-\lambda(-1-4)=-\cdot=$ positive
$f^{\prime}(1)=3(1)(1-4)=+\cdots=$ negative
$f^{\prime}(5)=3(5)(5-4)=+\cdot+=$ positive $\left\{\begin{array}{l}\text { all that } \\ \text { matters is } \\ \text { sign, nut } \\ \text { value. Test } \\ \text { each factor } \\ \text { for t or }-.\end{array}\right.$
(b) $\operatorname{lncreasing}(-\infty, 0) \cup(4, \infty)$
decreasing $(0,4)$

$$
\text { at }(0,15)
$$

-tot at $x=4 \Rightarrow$ minimum at $(4,-17)$
3.

$$
\begin{aligned}
f(x) & =x^{4}-32 x+4 \\
f^{\prime}(x) & =4 x^{3}-32 \\
0 & =4 x^{3}-32 \\
32 & =4 x^{3} \\
8 & =x^{3}
\end{aligned}
$$

test

$$
\begin{aligned}
& f^{\prime}(0)=-32=\text { negative } \\
& f^{\prime}(3)=4(3)^{3}-32=\text { positive }
\end{aligned}
$$

(b) increasing $(2, \infty)$
decreasing $(-\infty, 2)$
(c) local minimum at $(2,-44)$
(a) $2=x \quad$ CAN.

Fact: The derivative tells us where to find the \min / \max, but the original function tells us what it is.
4.

$$
\begin{aligned}
& f(x)=(x-3)^{1 / 3} \\
& f^{\prime}(x)=\frac{1}{3}(x-3)^{-2 / 3}(1)
\end{aligned}
$$

or $f^{\prime}(x)=\frac{1}{\sqrt[3]{(x-3)^{2}}}$

$$
f^{\prime}(x) \neq 0
$$

$f^{\prime}(x)$ is undefined at $x=3$

(b) increasing $(-\infty, 3) \cup(3,0) f^{\prime}(5)=\frac{1}{\sqrt[3]{\left(5^{-}-5\right)^{2}}}$ - pos
(c) no change in sign of derivative so no maximin.
(a) critical number $x=3$

Even though the graph appears to be always increasing, it is not increasing at $x=3$. This is the location of a vertical tangent line

$$
\begin{aligned}
& \text { 5. } f(x)=\frac{x}{x+3} \\
& f^{\prime}(x)=\frac{(x+3)(1)-x(1)}{(x+3)^{2}} \\
& f^{\prime}(x)=\frac{x+3-x}{(x+3)^{2}}=\frac{3}{(x+3)^{2}}
\end{aligned}
$$

(a) Critical number $x=-3$ (f^{\prime} not def.)
6. $f(x)=\frac{x^{2}-3 x-4}{x-2}$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{(x-2)(2 x-3)-\left(x^{2}-3 x-4\right)(1)}{(x-2)^{2}} \\
& f^{\prime}(x)=\frac{2 x^{2}-3 x-4 x+6-x^{2}+3 x+4}{(x-2)^{2}} \\
& f^{\prime}(x)=\frac{x^{2}-4 x+10}{(x-2)^{2}} \leftarrow \text { no real zeros }
\end{aligned}
$$

(a) $x=2$ critical number
7. $f(x)=\sin x \cos x+5,(0,2 \pi)$

$$
\begin{aligned}
& f^{\prime}(x)=\sin x(-\sin x)+\cos x(\cos x)+0 \\
& f^{\prime}(x)=\cos ^{2} x-\sin ^{2} x \\
& 0=\cos ^{2} x-\sin ^{2} x \\
& \sin ^{2} x=\cos ^{2} x
\end{aligned}
$$

at $x=\frac{\pi}{4}$ in all 4 Quadrants

$$
\text { (a) } x=\frac{\pi}{4}, \frac{311}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}
$$

$f^{\prime}(-4)=\frac{3}{(-4+3)^{2}}=\frac{\text { pos }}{\text { pos }}=$ pos tine

$$
f^{\prime}(0)=\frac{3}{p o s}=\text { positive }
$$

(b) increasing $(-\infty,-3) \cup(-3, \infty)$
(c) no change of sign in f^{\prime}, no extrema

$f^{\prime}(0)=\frac{10}{\text { pos }}=$ positive
$f^{\prime}(3)=\frac{7}{\text { pus }}=$ positive
(b) increasing $(-\infty, 2) \cup(2 \infty)$
(c) no extrema
$\max \min \max \min$

$f^{\prime}\left(\frac{\pi}{6}\right)=\frac{1}{2} \quad f^{\prime}\left(\frac{\pi}{2}\right)=-1$
$f^{\prime}(\pi)=1 \quad f^{\prime}\left(\frac{3}{2}\right)=-1$

$$
f\left(\frac{11 \pi}{6}\right)=\frac{1}{2}
$$

(b) increasing $(0, \pi / 4) \cup\left(\frac{311}{4}, \frac{3 \pi}{4}\right) \cup\left(\frac{7 \pi}{4}, 2 \pi\right)$ decreasing $(\pi / 4,3 \pi / 4) \cup\left(5 \pi / 4, \frac{7 \pi}{4}\right)$
(c) maximums at $\left(\pi / 4, \frac{11}{2}\right)$ and $\left(\frac{5 \pi}{4}, \frac{11}{2}\right)$ points $(x y)$ minimums at $\left(\frac{3 \pi}{4}, \frac{9}{2}\right)$ and $\left(\frac{7 \pi}{4}, \frac{9}{2}\right)$

Example: Coughing forces the trachea (windpipe) to contract, which affects the velocity v of the air passing through the trachea. The velocity of the air during coughing is $v=k(R-r) r^{2}, 0 \leq r<R$, where k is a constant, R is the normal radius of the trachea, and r is the radius during coughing. What radius will produce the maximum air velocity?
Finds \quad derivative $=0$
during
cough

$$
\begin{aligned}
\frac{d v}{d r} & =k\left[(R-r) 2 r+r^{2}(-1)\right] \\
& =k\left[2 R r-2 r^{2} r^{2}\right] \\
& =k\left[2 R r-3 r^{2}\right] \\
\frac{d v}{d r}-0 \text { when } 0 & =k\left[2 R r-3 r^{2}\right] \\
0 & =k r(2 R-3 r)
\end{aligned}
$$

$K r-0, r=0$, radius $=0$ is not a max velocity as no air can flow
$2 R-3 r=0$

$$
2 R=3 r
$$

$\frac{2 R}{3}=r$, radius that is $\frac{2}{3}$ the normal radius of your trachea will provide max velocity of a cough.
Good luck making that happen on purpose!

