3.8 Newton's Method

Newton's Method for Approximating the Zeros of a Function - Let $\mathrm{f}(\mathrm{c})=0$, where f is differentiable on an open interval containing c. Then, to approximate c, use the following steps.

1. Make an initial estimate x_{1} that is close to c. (A graph is helpful.)
2. Determine a new approximation $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$.
3. If $\left|x_{n}-x_{n+1}\right|$ is within the desired accuracy, let x_{n+1} serve as the final approximation. Otherwise, return to step 2 and calculate a new approximation.

Each successive application of the procedure is called iteration. Not that this is the same process your graphing calculator uses when asked to find a zero.

Examples: Complete two iterations of Newton's Method for the function using the given initial guess.

1. $f(x)=x^{3}-3, x_{1}=1.4$

Solution: First, find the derivative as we need it for the formula. $f^{\prime}(x)=3 x^{2}$.

For $x_{1}=1.4$ we will have $x_{2}=1.4-\frac{f(1.4)}{f^{\prime}(1.4)}=1.4-\frac{(1.4)^{3}-3}{3(1.4)^{2}}=1.4435$

Now $x_{2}=1.4435$ and $x_{3}=1.4435-\frac{f(1.4435)}{f^{\prime}(1.4435)}=1.4435-\frac{(1.4435)^{3}-3}{3(1.4435)^{2}}=1.4423$

We see that both x_{1} and x_{2} are accurate to two decimal places so our answer would be 1.44.
2. $f(x)=\tan x, x_{1}=0.1$

Solution: The derivative is $f^{\prime}(x)=\sec ^{2} x$. Using the formula with $x_{1}=0.1$ (and in radian mode), we get $x_{2}=0.1-\frac{\tan (0.1)}{\sec ^{2}(0.1)}=6.6533 \times 10^{-4}=0.00066533$. Next we can find $x_{3}=0.00066533-\frac{\tan (0.00066533)}{\sec ^{2}(0.00066533)}=1.96 \times 10^{-10}=0.000000000196$. With this result we are pretty sure that we have found our solution.

Examples: Approximate the zero(s) of the function. Use Newton's Method and continue the process until two successive approximations differ by less than 0.001 .

1. $f(x)=x^{5}+x-1$ it looks like there is a zero just below $\mathrm{x}=1$.

Solution: The derivative is $f^{\prime}(x)=5 x^{4}+1$.

$$
x_{1}=1
$$

$$
x_{2}=1-\frac{f(1)}{f^{\prime}(1)}=\frac{5}{6} \approx 0.83333
$$

$$
x_{3}=\frac{5}{6}-\frac{f(5 / 6)}{f^{\prime}(5 / 6)}=\frac{10138}{13263} \approx 0.76438
$$

$$
x_{4}=0.76438-\frac{f(0.76438)}{f^{\prime}(0.76438)}=0.75502
$$

$$
x_{5}=0.75502-\frac{f(0.75502)}{f^{\prime}(0.75502)}=0.75487770177, \text { we're getting close... }
$$

$$
x_{6}=0.75488-\frac{f(0.75488)}{f^{\prime}(0.75488)}=0.754877666247
$$

These last two values are within 0.001 of each other so we will accept x_{6} as our solution.
2. $f(x)=x-2 \sqrt{x+1}$, it looks like there is a zero near $x=5$.

Solution: First we start with the derivative which is $f^{\prime}(x)=1-\frac{1}{\sqrt{x+1}}$.
$x_{1}=5$
$x_{2}=5-\frac{f(5)}{f^{\prime}(5)}=4.8292856399$
$x_{3}=4.8292856399-\frac{f(4.8292856399)}{f^{\prime}(4.8292856399)}=4.8284271471$
$x_{4}=4.8284271471-\frac{f(4.8284271471)}{f^{\prime}(4.8284271471)}=4.82842712475$

These last two approximations are similar to seven decimal places. We will take x_{4} as our approximation of the zero of the given function.

There is a video quiz for this topic; watching the video will help the process become clearer if you need to see it happen. There is also a PowerPoint located on my website at http://www.math.utep.edu/Faculty/tuesdayi/math1411/newtonsmethodppt.pdf if you need more instruction.

