Chapter Four: Integration

4.1 Antiderivatives and Indefinite Integration

Definition of Antiderivative - A function F is an antiderivative of f on an interval $/$ if $F^{\prime}(x)=f(x)$ for all x in 1 .

Representation of Antiderivatives - If F is an antiderivative of f on an interval I, then G is an antiderivative of f on the interval $/$ if and only if G is of the form $G(x)=F(x)+C$, for all x in / where C is a constant.
This tells us that all antiderivatives of a function differ only by a constant C.

Examples: Find an antiderivative and then find the general antiderivative.

1. $y=3$
2. $f(x)=2 x$
3. $f(x)=5 x^{4}$

A possible anti-der
A possible $F(x)$ is
is $Y=3 x$. In $F(x)=x^{2}$. In general,
general, the anti-der
$F(x)=x^{2}+C$
A possible antiderivative
is $F(x)=x^{5}+7$. In
general, $F(x)=x^{5}+C$.
15 $\quad Y=3 x+C$
Since any constant has derivative D, we use C for an arbitrary
Constant in the antiderivative
Notation: If we take the differential form of a derivative, $\frac{d y}{d x}=f(x)$, and rewrite it in the form $d y=f(x) d x$ we can find the antiderivative of both sides using the integration symbol \int. That is,

$$
y=\int d y=\int f(x) d x=F(x)+C
$$

Each piece of this equation has a name that I will refer to: The integrand is $f(x)$, the variable of integration is given by $d x$, the antiderivative of $f(x)$ is $F(x)$, and the constant of integration is C. The term indefinite integral is a synonym for antiderivative.

Note: Differentiation and anti-differentiation are "inverse" operations of each other. That is, if you find the antiderivative of a function f, then take the derivative, you will end up back at f. Similarly, if you take the derivative, the antiderivative takes you back.

Some Basic Integration Rules:

$$
\begin{array}{ll}
\int 0 d x=C & \int k d x=k x+C
\end{array} \int k f(x) d x=k \int f(x) d x .
$$

We can also consider all the trig derivatives and go backwards to find their integrals.

Examples: For each function, rewrite then integrate and finally simplify.

1. $\int \sqrt[3]{x} d x=\int x^{1 / 3} d x=\frac{x^{\frac{1}{3}+1}}{\frac{1}{3}+1}+C=\frac{x^{\frac{4}{3}}}{\frac{4}{3}}+C=\frac{3}{4} x^{4 / 3}+C$
$\sqrt[3]{x}=x^{1 / 3}$

$$
\sqrt[3]{x}=x^{1 / 3}
$$

2. $\int \frac{1}{4 x^{2}} d x=\int \frac{1}{4} x^{-2} d x=\frac{1}{4} \int x^{-2} d x=\frac{1}{4} \frac{x^{-2+1}}{-2+1}+C=\frac{1}{4} \frac{x^{-1}}{-1}+C=\frac{x^{-1}}{-4}+C$ $=-\frac{1}{4 x}+c$
3. $\int \frac{1}{x \sqrt{x}} d x=\int x^{-3 / 2} d x=\frac{x^{-\frac{3}{2}+1}}{-\frac{3}{2}+1}+C=\frac{x^{-1 / 2}}{-\frac{1}{2}}+C=-2 x^{-1 / 2}+C=\frac{-2}{\sqrt{x}}+C$ simplify $x \sqrt{x}=x \cdot x^{1 / 2}=x^{1+1 / 2}=x^{3 / 2}$
4. $\int x\left(x^{3}+1\right) d x=\int\left(x^{4}+x\right) d x=\frac{x^{4+1}}{4+1}+\frac{x^{1+1}}{1+1}+c=\frac{x^{5}}{5}+\frac{x^{2}}{2}+c$

No product rule for
integrals!
5. $\int \frac{1}{(3 x)^{2}} d x=\int \frac{1}{9 x^{2}} d x=\frac{1}{9} \int x^{-2} d x=\frac{1}{9} \frac{x^{-2+1}}{-2+1}+C=\frac{1}{9} \frac{x^{-1}}{-1}+C=\frac{-1}{9 x}+C$
on the
homework
Webetssign makes it look
weird, but this is $x \cdot \sqrt[5]{x}$
which is $x \cdot x^{1 / 5}=x^{6 / 5}$
Examples: Find the indefinite integral and check the result by differentiation.

1. $\int(12-x) d x=12 x-\frac{x^{2}}{2}+C$
check: $\frac{d}{d x}\left(12 x-\frac{x^{2}}{2}+c\right)=12-\frac{2 x}{2}+0=12-x$
2. $\int\left(8 x^{3}-9 x^{2}+4\right) d x=\frac{8 x^{4}}{4}-\frac{9 x^{3}}{3}+4 x+C=2 x^{4}-3 x^{3}+4 x+C$

Check: $\frac{d}{d x}\left(2 x^{4}-3 x^{3}+4 x+c\right)=8 x^{3}-9 x^{2}+4+0=8 x^{3}-9 x^{2}+4$
3. $\int\left(\sqrt{x}+\frac{1}{2 \sqrt{x}}\right) d x=\int\left(x^{1 / 2}+\frac{1}{2} x^{-1 / 2}\right) d x=\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}+\frac{1}{2} \frac{x^{-1 / 2+1}}{-\frac{1}{2}+1}+C$

Rewrite $\sqrt{x}+\frac{1}{2 \sqrt{x}}=x^{1 / 2}+\frac{1}{2} x^{-1 / 2}$

$$
=\frac{x^{3 / 2}}{\frac{3}{2}}+\frac{1}{2} \frac{x^{1 / 2}}{\frac{1}{2}}+C=\frac{2}{3} x^{3 / 2}+x^{1 / 2}+C
$$

Check: $\frac{d}{d x}\left(\frac{2}{3} x^{3 / 2}+x^{1 / 2}+c\right)=\frac{2}{3}\left(\frac{3}{2} x^{1 / 2}\right)+\frac{1}{2} x^{-1 / 2}+0=\sqrt{x}+\frac{1}{2 \sqrt{x}}$
4. $\int \frac{x^{2}+2 x-3}{x^{4}} d x=\int\left(x^{-2}+2 x^{-3}-3 x^{-4}\right) d x=\frac{x^{-1}}{-1}+2 \frac{x^{-2}}{-2}-\frac{3 x^{-3}}{-3}+C=-x^{-1}-x^{-2}+x^{-3}+C$

No quotient role for

$$
=-\frac{1}{x}-\frac{1}{x^{2}}+\frac{1}{x^{3}}+c
$$

integrals!

$$
\frac{x^{2}+2 x-3}{x^{4}}=\frac{x^{2}}{x^{4}}+\frac{2 x}{x^{4}}-\frac{3}{x^{4}}=x^{-2}+2 x^{-3}-3 x^{-4}
$$

Check: $\frac{d}{d x}\left(-x^{-1}-x^{-2}+x^{-3}+c\right)=-\left(-1 x^{-2}\right)-\left(-2 x^{-3}\right)+\left(-3 x^{-4}\right)+0=x^{-2}+2 x^{-3}-3 x^{-4}$
5. $\int\left(2 t^{2}-1\right)^{2} d t=\int\left(4 t^{4}-4 t^{2}+1\right) d t=4 \frac{t^{5}}{5}-\frac{4 t^{3}}{3}+t+C=\frac{4}{5} t^{5}-\frac{4}{3} t^{3}+t+C$

Rewrite $\left(2 t^{2}-1\right)^{2}=4 t^{4}-4 t^{2}+1$

$$
\text { Check: } \frac{d}{d t}\left(\frac{4}{5} t^{5}-\frac{4}{3} t^{3}+t+c\right)=\frac{4}{5}\left(5 t^{4}\right)-\frac{4}{3}\left(3 t^{2}\right)+1+0=4 t^{4}-4 t^{2}+1
$$

6. $\int\left(t^{2}-\cos t\right) d t=\int t^{2} d t-\int \cos t d t=\frac{t^{3}}{3}-\sin t+C$

Check: $\frac{d}{d t}\left(\frac{t^{3}}{3}-\sin t+c\right)=\frac{1}{3}\left(3 t^{2}\right)-\cos t+0=t^{2}-\cos t$
7. $\int\left(\theta^{2}+\sec ^{2} \theta\right) d \theta=\frac{\theta^{3}}{3}+\tan \theta+C$

What has derivative Check: $\frac{d}{d \theta}\left(\frac{\theta^{3}}{3}+\tan \theta+c\right)=\frac{3 \theta^{2}}{3}+\sec ^{2} \theta 10$ equal to $\sec ^{2} \theta^{2}$.

$$
=\theta^{2}+\sec ^{2} \theta
$$

8. $\int \sec y(\tan y-\sec y) d y=\int\left(\sec y \tan y-\sec ^{2} y\right) d y=\sec y-\tan y+C$
still no product rule! \quad Check: $\frac{d}{d y}(\sec y-\tan y+c)=\sec y \tan y-\sec ^{2} y+0$ $=\sec y \tan y-\sec ^{2} y$

Example: Find the equation of y given $\frac{d y}{d x}=2 x-1$ that has the particular point $(1,1)$ as part of its solution set.

$$
y=\int d y=\int(2 x-1) d x=2 \frac{x^{2}}{2}-x+C=x^{2}-x+C
$$

Since $(1,1)$ is a solution, we can substitute to find a specific value of C :

$$
\begin{aligned}
& 1=(1)^{2}-(1)+c \\
& 1=1-1+c \\
& 1=c
\end{aligned}
$$

Example: Solve the differential equation.

$$
\begin{aligned}
& \text { 1. } f^{\prime}(x)=6 x^{2}, f(0)=-1 \\
& f(x)=\int 6 x^{2} d x=6 \frac{x^{3}}{3}+c=2 x^{3}+C \\
& -1=2(0)^{3}+C \quad \\
& -1=C
\end{aligned}
$$

Solution: $y=x^{2}-x+1$
example Solve the different equal
2. $f^{\prime}(p)=10 p-12 p^{3}, f(3)=2$

$$
\begin{array}{ll}
f(p) & =\int\left(10 p-12 p^{3}\right) d p=\frac{10 p^{2}}{2}-\frac{12 p^{4}}{4}+c=5 p^{2}-3 p^{4}+c \\
2 & =5(3)^{2}-3(3)^{4}+c \\
2=45-243+c & f(p)=5 p^{2}-3 p^{4}+200 \\
200 & =c
\end{array}
$$

3. $h^{\prime \prime}(x)=\sin x, h^{\prime}(0)=1, h(0)=6$

$$
b=c
$$

$$
\begin{aligned}
& h^{\prime}(x)=\int h^{\prime \prime}(x) d x=\int \sin x d x=-\cos x+C \\
& 1=-\cos (0)+C \\
& h^{\prime}(x)=-\cos x+2 \\
& 1=-1+c \\
& 2=c \\
& \begin{array}{l}
h(x)=\int(-\cos x+2) d x=-\sin x+2 x+C \\
6=-\sin (0)+2(0)+C \quad h(x)=-\sin x+2 x+6
\end{array}
\end{aligned}
$$

Example: A particle, initially at rest, moves along the x-axis such that its acceleration at time $t>0$ is given by $a(t)=\cos t$. At the time $t=0$, its position is $x=3$.

Similar to
\rightarrow a) Find the velocity and position functions for the particle.
b) Find the values of t for which the particle is at rest.

$$
\begin{aligned}
& a(t)=\cos t \\
& v(t)=\int a(t) d t=\int \cos t d t=\sin t+c \\
& \text { at rest has } v(0)=0 \\
& \text { so } C=0 \\
& \text { part } \longrightarrow V(t)=\sin t \\
& x(t)=\int v(t) d t=\int \sin t d t=-\cos t+C \\
& \text { part }_{a} \longrightarrow X(t)=-\cos t 14 \\
& 3=-\cos (0)+C \\
& 3=-1+c \\
& 4=c
\end{aligned}
$$

b) particle at rest \Rightarrow velocity is 0
$V(t)=\sin t=0$ when $t=k \pi$ for any integer k

